Analysis and Partial Differential Equations: Perspectives from Developing Countries pp 109-136 | Cite as
Convergence of Fourier-Walsh Double Series in Weighted \(L_{\mu }^{p}[0,1)^{2}\)
Conference paper
First Online:
Abstract
In this work we discuss the behavior of Fourier coefficients with respect to the Walsh double system, as well as \(L_{\mu }^{p}[0,1)^{2}\)-convergence of the spherical partial sums of the double Fourier-Walsh series after modification of functions.
Keywords
Fourier series Fourier-Walsh double series Lebesgue spacesReferences
- 1.Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)MathSciNetCrossRefGoogle Scholar
- 2.D’yachenko, M.I.: Some problems in the theory of multiple trigonometric series. Uspekhi Mat. Nauk 47(5) (16992), 97–162 (1992) (English transl. In Russian Math. Surveys 47)MathSciNetCrossRefGoogle Scholar
- 3.Fefferman, C.: On the divergence of multiple Fourier series. Bull Am. Math. Soc. 77(2), 191–195 (1971)MathSciNetCrossRefGoogle Scholar
- 4.Fefferman, C.: The multiple problem for the ball. Ann. Math. 94(2), 330–336 (1971)MathSciNetCrossRefGoogle Scholar
- 5.Galoyan, L.N., Grigoryan, M.G., Kobelyan, AKh: Convergence of Fourier series in classical systems. Mat. Sb. 206(7), 55–94 (2015)MathSciNetCrossRefGoogle Scholar
- 6.Getsadze, R.D.: On divergence in measure of general multiple orthogonal Furier series. Dokl. Akad. Nauk SSSR 306, 24–25 (1989) (English transl. in Soviet Math. Dokl. 39 1989)Google Scholar
- 7.Golubov, B.I., Efimov, A.F., Skvortsov, V.A.: Series and Transformations of Walsh. Moskow (1987) (in Russian)Google Scholar
- 8.Golubov, B.I.: Multiple Furier series and integrals. Itogi Nauki i Tekhniki Ser. Mat. Anal. 47(5), 97–162 (1992) (English transl. in J. Soviet Math. 24 1984)Google Scholar
- 9.Grigorian, M.G.: On the convergence of Fourier series in the metric of L. Anal. Math. 17, 211–237 (1991)MathSciNetCrossRefGoogle Scholar
- 10.Grigorian, M.G.: On the \(L^{p}\)-strong property of orthonormal systems. Math. sb. 194(10), 77–106 (2012) (in Russ., English transl. Sbornik: Math. 194(10), 1503–1532)Google Scholar
- 11.Grigorian, M.G., Sargsyan, A.A.: On the coefficients of expansion of elements from C[0,1] space by the Faber-Schauder system. J. Funct. Spaces Appl. 2, 34–42 (2011)MathSciNetGoogle Scholar
- 12.Grigorian, M.G., Zink, R.E.: Greedy approximation with respect to certain subsystems of the Walsh orthonormal system. Proc. Am. Math. Soc. 134(12), 3495–3505 (2006)MathSciNetCrossRefGoogle Scholar
- 13.Grigoryan, M.G.: Modifications of functions, Fourier coefficients and nonlinear approximation. Mat. Sb. 203(3), 49–78 (2012)MathSciNetCrossRefGoogle Scholar
- 14.Grigoryan, M.G.: Uniform convergence of the greedy algorithm with respect to the Walsh system. Studia Math. 198(2), 197–206 (2010)MathSciNetCrossRefGoogle Scholar
- 15.Grigoryan, M.G., Gogyan, S.L.: On nonlinear approximation with respect to the Haar system and modifications of functions. An. Math. 32, 49–80 (2006)CrossRefGoogle Scholar
- 16.Grigoryan, M.G., Krotov, V.G.: Luzin’s correction theorem and the coefficients of Fourier expansions in the faber-schauder system. Mat. Zametki 93(2), 172–178 (2013)MathSciNetCrossRefGoogle Scholar
- 17.Grigoryan, M.G., Navasardyan, K.A.: On behavior of Fourier coefficients by Walsh systems. J. Contemp. Math. Anal. (Armen. Acad. Sci.) 51(1), 1–13 (2016)CrossRefGoogle Scholar
- 18.Grigoryan, M.G.: On some properties of orthogonal systems. Izv. Ross. Akad. Nauk, Ser. Mat. 57(5), 75–105 (1993)Google Scholar
- 19.Grigoryan, M.G., Sargsyan, A.A.: On the universal functions fr the class Lp[0,1]. J. Funct. Anal. 270, 3111–3133 (2016)MathSciNetCrossRefGoogle Scholar
- 20.Grigoryan, M.G., Sargsyan, S.A.: On the Fourier-Vilenkin coefficients. Acta Math. Sci. 37(B)(2), 293–300 (2017)MathSciNetCrossRefGoogle Scholar
- 21.Grigoryan, M.G.: Series in the classical systems. LAP LAMBERT Academic Publishing, Saarbruken (2017) (in Russian)Google Scholar
- 22.Harris, D.C: Almost everywhere divergence of multiple Walsh-Fourier series. Am. Math. Soc. 101(4) (1987)MathSciNetCrossRefGoogle Scholar
- 23.Kolmogorov, A.H.: Sur les fonctions harmoniques conjugees et les series. de Fourier, FM 7, 23–28 (1925)Google Scholar
- 24.Luzin, N.N.: On the fundamental theorem of the integral calculus. Mat. Sb. 28, 266–294 (1912). (in Russian)Google Scholar
- 25.Men’shov, D.E.: Sur la convergence uniforme des series de Fourier. Mat. Sb. 11(53), 67–96 (1942) (French; Russian)Google Scholar
- 26.Men’shov, D.E.: On Fourier series of integrable functions. Trudy Moskov. Mat. Obshch. 1, 5–38 (1952)Google Scholar
- 27.Paley, R.E.A.C.: A remarkable set of orthogonal functions. Proc. Lond. Math. Soc. 34, 241–279 (1932)CrossRefGoogle Scholar
- 28.Riss, M.: Sur les fonctions conjugees. Math. Zeit. 27, 214–244 (1927)Google Scholar
- 29.Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923)MathSciNetCrossRefGoogle Scholar
- 30.Zhizhiashvili, L.V.: Some problems in the theory of simple and multiple trigonometric and orthogonal series. Uspekhi Mat. Nauk 28(2), 65–119 (1973) (English transl. In Russian, Math. Surveys 28 1973)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019