Advertisement

Optimization Studies on an Accelerator-Driven Neutron Source

  • Jan Philipp Dabruck
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Optimization studies for the accelerator-driven HBS are based on the simulation results on the laser-driven neutron source discussed in the previous chapter. Findings regarding the moderator material and the dependence of the neutron flux on the moderator configuration and in particular the idea of the Finger Moderator are therefore adopted to the accelerator-driven system. Another important aspect in the development of a concept for the accelerator-driven HBS is the target design, for which the neutron yield is investigated as a function of the incident particle type, its energy, and the target material.

References

  1. 1.
    X-5 Monte Carlo Team, MCNP-A General N-Particle Transport Code, Version 5. LA-UR-03-1987. Technical report Los Alamos National Laboratory, 1 Feb 2008. https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf
  2. 2.
    A. Sperling, J.P. Dabruck, binning.java., Java Application for Twodimensional Binning of Scattered Data (Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 2015)Google Scholar
  3. 3.
    A. Nalbandyan, Simulation of Total Neutron Yields Produced by Proton Beams on Be Target (Report on Mini-Project. Institute of Nuclear Engineering and Technology Transfer, RWTH Aachen University, 2016)Google Scholar
  4. 4.
    P. Zakalek, Development of high-brilliant neutron source targets, in Workshop Presentation in Unkel, Germany. Jülich Center for Neutron Science 2, Forschungszentrum Jülich, vol. 29 (2016)Google Scholar
  5. 5.
    I. Tilquin et al., Experimental measurements of neutron fluxes produced by proton beams (23-80 MeV) on Be and Pb targets, in: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 545.1–2, 339–343 (2005). ISSN: 0168-9002.  https://doi.org/10.1016/j.nima.2005.01.325, http://www.sciencedirect.com/science/article/pii/S016890020500522XADSCrossRefGoogle Scholar
  6. 6.
    S. Halfon et al., High-power liquid-lithium jet target for neutron production. Rev. Sci. Instrum. 84(12), 123507 (2013).  https://doi.org/10.1063/1.4847158ADSCrossRefGoogle Scholar
  7. 7.
    S. Halfon et al., Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target. Rev. Sci. Instrum. 85.5, 056105 (2014).  https://doi.org/10.1063/1.4878627ADSCrossRefGoogle Scholar
  8. 8.
    T. Kobayashi, K. Miura, N. Hayashizaki, M. Aritomi, Development of liquid-lithium film jet-flow for the target of 7Li(p,n)7Be reactions for BNCT. Appl. Radiat. Isot. 88, 198–202 (2014). ISSN 0969-8043.  https://doi.org/10.1016/j.apradiso.2013.12.013, http://www.sciencedirect.com/science/article/pii/S096980431300609X (15th International Congress on Neutron Capture Therapy Impact of a New Radiotherapy Against Cancer)CrossRefGoogle Scholar
  9. 9.
    U. Rücker et al., The Jülich high-brilliance neutron source project. Eur. Phys. J. Plus 131(1), 19 (2016).  https://doi.org/10.1140/epjp/i2016-16019-5
  10. 10.
    J. Ulrich, Untersuchungen zurNeutronenproduktion mittels photonuklearer Wechselwirkungen (Available for internal use at NET, RWTH Aachen and its project partners, Aachen, Germany, 31 Dec 2015)Google Scholar
  11. 11.
    F.J. Bermejo, F. Sordo, ESS-Bilbao Target Station. Technical Design Report. ESS-Bilbao Target Devision, 1 July 2013, p. 33. ISRN: 978-84-695-8105-6. http://www.essbilbao.org/index.php/en/component/docman/doc_download/417-essb-ntar-2013-final-tdr-july
  12. 12.
    L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik Band 1: Mechanik (Akademie Verlag, Berlin, Germany, 1970). ISBN: 978-3808556122Google Scholar
  13. 13.
    D. Meschede, Gerthsen Physik (Springer, Berlin, 2010). ISBN: 978-3-642-12893-6Google Scholar
  14. 14.
    Y. Yamagata, J. Ju, K. Hirota, Neutron generation source, and neutron generation device. EP Patent App. EP20130757266 (Japan) (2015). https://patents.google.com/patent/EP2824999A1/ja
  15. 15.
    H. Kumada et al., Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 106, 78–83 (2015).  https://doi.org/10.1016/j.apradiso.2015.07.033, http://www.sciencedirect.com/science/article/pii/S0969804315301159 (The 16th International Congress on Neutron Capture Therapy (ICNCT-16). Representative person of the Organizing Committee: Dr Hanna Koivunoro (Secretary general of the ICNCT-16))CrossRefGoogle Scholar
  16. 16.
    T. Rinckel, D.V. Baxter, J. Doskow, P.E. Sokol, T. Todd, Target performance at the low energy neutron source. Phys. Proc. 26, 168–177 (2012). ISSN: 1875-3892.  https://doi.org/10.1016/j.phpro.2012.03.022, http://www.sciencedirect.com/science/article/pii/S1875389212004385ADSCrossRefGoogle Scholar
  17. 17.
    H. Kumada et al., Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 106, 78–83 (2015). ISSN: 0969-8043.  https://doi.org/10.1016/j.apradiso.2015.07.033, http://www.sciencedirect.com/science/article/pii/S0969804315301159 (The 16th International Congress on Neutron Capture Therapy (ICNCT-16). Representative person of the Organizing Committee: Dr Hanna Koivunoro (Secretary general of the ICNCT-16))CrossRefGoogle Scholar
  18. 18.
    J.M. Carpenter, Gallium-cooled target for compact accelerator-based neutron sources. Phys. Proc. 26, 132–141 (2012). ISSN: 1875-3892.  https://doi.org/10.1016/j.phpro.2012.03.018, http://www.sciencedirect.com/science/article/pii/S1875389212004348ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Westwater, L.S. Tong, Boiling heat transfer and two-phase flow. AIChE J. 12.3, 616–617 (1966). ISSN: 1547-5905.  https://doi.org/10.1002/aic.690120303 (Wiley)CrossRefGoogle Scholar
  20. 20.
    M.M. El-Wakil, Nuclear Heat Transport (American Nuclear Society, 1978). ISBN: 978-0-89448-014-0Google Scholar
  21. 21.
    B.W. Blackburn, J.C. Yanch, R.E. Klinkowstein, Development of a high power water cooled beryllium target for use in accelerator-based boron neutron capture therapy. Med. Phys. 25(10), 1967–1974 (1998). ISSN: 2473- 4209.  https://doi.org/10.1118/1.598370ADSCrossRefGoogle Scholar
  22. 22.
    I. Silverman, A. Nagler, High heat flux cooling with water jet impingement, in ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, vol. 1 (2004), pp. 277–282.  https://doi.org/10.1115/HT-FED2004-56273
  23. 23.
    J. Esposito et al., Be target development for the accelerator-based SPES-BNCT facility at INFN Legnaro. Appl. Radiat. Isot. 67, 7–8 (2009). ISSN: 0969-8043.  https://doi.org/10.1016/j.apradiso.2009.03.085, http://www.sciencedirect.com/science/article/pii/S0969804309003017 (13th International Congress on Neutron Capture Therapy BNCT: a new option against cancer, S270–S273)CrossRefGoogle Scholar
  24. 24.
    C. Ceballos et al., Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL. Appl. Radiat. Isot. 69(12), 1660–1663 (2011). ISSN: 0969-8043.  https://doi.org/10.1016/j.apradiso.2011.01.032. http://www.sciencedirect.com/science/article/pii/S0969804311000467 (Special Issue: 14th International Conference on Neutron Capture Therapy)CrossRefGoogle Scholar
  25. 25.
    B.W. Blackburn, J.C. Yanch, Liquid Gallium Cooling for a High-Power Beryllium Target for use in Accelerator Boron Neutron Capture Therapy (ABNCT) (Target Chemistry, 1999)Google Scholar
  26. 26.
    G. Speckbrock, S. Kamitz, M. Alt, H. Schmitt, Clinical Thermometer. EP0657023 (1996). http://www.freepatentsonline.com/EP0657023B1.html(visitedon09/11/2016)
  27. 27.
    M. Winter, Gallium: The Essentials (The University of Sheffield and Web Elements Ltd., 1993–2016). https://www.webelements.com/gallium/
  28. 28.
    Q. Xu, N. Qudalov, Q. Guo, H. Jaeger, E. Brown, Effect of Oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium (2012), p. 18.  https://doi.org/10.1063/1.4724313, https://arxiv.org/abs/1201.4828v1ADSCrossRefGoogle Scholar
  29. 29.
    Geratherm Medical AG, Galinstan fluid. Safety Data Sheet. Germany, 18 Mar 2004. http://www.rgmd.com/msds/msds.pdf(visitedon09/11/2016)
  30. 30.
    M.D. Dickey et al., Eutectic Gallium-Indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18(7), 1097–1104 (2008). ISSN: 1616-3028.  https://doi.org/10.1002/adfm.200701216CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, J.R.G. Evans, S. Yang, Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. J. Chem. Eng. Data 56(2), 328–337 (2011).  https://doi.org/10.1021/je1011086CrossRefGoogle Scholar
  32. 32.
    U. Rücker, T. Brückel, T. Cronert, J.P. Dabruck, R. Nabbi, Vorrichtung zur Erzeugung von thermischen Neutronenstrahlen mit Hoher Billanz und Herstellungsverfahren. PUB:(DE-HGF)23 Patent 16166567.4-1556 (EP3091540B1) (Germany). JCNS-2/PGI-4/JARA-FIT (2016). http://juser.fz-juelich.de/record/810621
  33. 33.
    R. Kajimoto et al., High intensity chopper spectrometer 4SEASONS At J-PARC. J. Neutron Res. 15(1), 5–12 (2007).  https://doi.org/10.1080/10238160601048742CrossRefGoogle Scholar
  34. 34.
    K. Nakajima et al., AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Jpn. 80(Suppl.B), SB028 (2011).  https://doi.org/10.1143/JPSJS.80SB.SB028CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Georesources and Materials Engineering, Institute for Nuclear Engineering and Technology Transfer (NET)RWTH Aachen UniversityAachenGermany

Personalised recommendations