Advertisement

Physical and Technical Principles

  • Jan Philipp DabruckEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

All processes occurring in nature are based on interactions between elementary particles mediated by the four fundamental forces (electromagnetic, weak, and strong interaction, and gravitation). For composite particles, processes occur which can be regarded as effective interactions. Examples are nuclear reactions of neutrons in matter, the Bremsstrahlung emission of charged particles in the Coulomb field of atomic nuclei, or the radioactive decay of unstable isotopes.

References

  1. 1.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics. (MC Graw Hill Book Company, 1964). ISBN: 0-07-005493-2Google Scholar
  2. 2.
    G. Musiol, J. Ranft, R. Reif, D. Seliger, Kern- und Elementarteilchenphysik, 2nd edn. (Verlag Harri Deutsch, 1995), p. 1127. ISBN: 3-8171-1404-4Google Scholar
  3. 3.
    H. Schwoerer, J. Magill, B. Beleites, Lasers and nuclei. Applications of ultrahigh intensity lasers in nuclear science. Lecture Notes in Physics, vol. 694 (Springer, Berlin, 2006). ISBN: 978-3-540-30271-1.  https://doi.org/10.1007/b11559214Google Scholar
  4. 4.
    G. Schmidt, Physics of High Temperature Plasmas, 2nd edn. (Academic Press, New York, 1979)Google Scholar
  5. 5.
    R.A. Snavely et al., Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85(14), 2945–2948 (2000).  https://doi.org/10.1103/PhysRevLett.85.2945ADSCrossRefGoogle Scholar
  6. 6.
    M. Hegelich et al., MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89(8), Aug 2002.  https://doi.org/10.1103/PhysRevLett.89.085002
  7. 7.
    Stephen P. Hatchett et al., Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7(5), 2076–2082 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    J. Fuchs et al., Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2(1), 48–54 (2006).  https://doi.org/10.1038/nphys199MathSciNetCrossRefGoogle Scholar
  9. 9.
    A.P.L. Robinson, A.R. Bell, R.J. Kingham, Effect of target composition on proton energy spectra in ultraintense laser-solid interactions. Phys. Rev. Lett. 96(3) (2006).  https://doi.org/10.1103/PhysRevLett.96.035005
  10. 10.
    S. Karsch, High-intensity laser generated neutrons: a novel neutron source and new tool for plasma diagnostics. Ph.D. Thesis. München: LMU Munich, Faculty of Physics (2002). https://edoc.ub.uni-muenchen.de/703/1/Karsch_Stefan.pdf
  11. 11.
    H. Schwoerer et al., Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439(7075), 445–448 (2006).  https://doi.org/10.1038/nature04492ADSCrossRefGoogle Scholar
  12. 12.
    L. Yin et al., Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets a. Phys. Plasmas 14, 5 (2007)Google Scholar
  13. 13.
    B.J. Albright et al., Relativistic buneman instability in the laser breakout afterburner. Phys. Plasmas 14, 9 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Henig et al., Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103(4) (2009).  https://doi.org/10.1103/PhysRevLett.103.045002
  15. 15.
    D. Jung, Ion acceleration from relativistic laser nano-target interaction. Ph.D. Thesis. München: LMU Munich, Faculty of Physics (2012). https://edoc.ub.uni-muenchen.de/14074/1/Jung_Daniel.pdf
  16. 16.
    M. Roth, Breaking the 70 MeV proton energy threshold in laser proton acceleration and guiding beams to applications, in IPAC Dresden (2014). http://accelconf.web.cern.ch/accelconf/IPAC2014/talks/wexb01_talk.pdf
  17. 17.
    D. Jung et al., Characterization of a novel, short pulse laser-driven neutron source. Phys. Plasmas 20(5), 056706 (2013). p. 9.  https://doi.org/10.1063/1.4804640ADSCrossRefGoogle Scholar
  18. 18.
    M. Roth et al., Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110(4) (2013).  https://doi.org/10.1103/PhysRevLett.110.044802
  19. 19.
    D. Faircloth, Ion sources for high-power hadron accelerators, in CERN Accelerator School on High Power Hadron Machines (CAS 2011). (Bilbao, Spain, May 24–June 2, 2011) (2013). arXiv:1302.3745v1 [physics.acc-ph]. https://inspirehep.net/record/1220608/files/arXiv:1302.3745.pdf
  20. 20.
    R. Scrivens, Electron and ion sources for particle accelerators, in CAS - CERN Accelerator School: Intermediate Course on Accelerator Physics. (Zeuthen, Germany, Sept, 15–26, 2003) (2006), pp. 495–504.  https://doi.org/10.5170/CERN-2006-002.495. https://cds.cern.ch/record/941321
  21. 21.
    I.M. Kapchinskii, V.A. Teplyakov, Linear Ion Accelerator with spatially homogeneous strong focusing. Instrum. Exp. Tech. 2.322(6) (1970)Google Scholar
  22. 22.
    C. Zhang, A. Schempp, Beam dynamics studies on a 200 mA proton radio frequency quadrupole accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 586(2), 153–159 (2008). ISSN: 0168-9002.  https://doi.org/10.1016/j.nima.2007.12.001. http://www.sciencedirect.com/science/article/pii/S0168900207024199ADSCrossRefGoogle Scholar
  23. 23.
    R.H. Stokes, T.P. Wangler, Radiofrequency quadrupole accelerators and their applications. Annu. Rev. Nucl. Part. Sci. 38(1), 97–118 (1988).  https://doi.org/10.1146/annurev.ns.38.120188.000525ADSCrossRefGoogle Scholar
  24. 24.
    F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik, 2nd edn. (Springer, 2008)Google Scholar
  25. 25.
    Superconductivity and cryogenics for accelerators and detectors, in CAS - CERN Accelerator School. (Erice, Italy, May 8–17, 2002) (2004). ISBN: 92-9083-230-4. http://cds.cern.ch/record/503603/files/CERN-2004-008.pdf?version=2
  26. 26.
    L. Lilje et al., Achievement of 35 MV/m in the superconducting nine-cell cavities for TESLA. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 524(1–3), 1–12 (2004). ISSN: 0168-9002.  https://doi.org/10.1016/j.nima.2004.01.045. http://www.sciencedirect.com/science/article/pii/S0168900204001391ADSCrossRefGoogle Scholar
  27. 27.
    G.D. Alton, J.R. Beene, The holifield radioactive ion beam facility at the oak ridge national laboratory: present status and future plans. J. Phys. G Nucl. Part. Phys. 24(8), 1347 (1998). http://iopscience.iop.org/article/10.1088/0954-3899/24/8/006/pdfADSCrossRefGoogle Scholar
  28. 28.
    High Voltage Engineering Europa B.V. Singletron Accelerator Systems. Coaxial and In-Line Positive Ion Accelerators. Online brochure. Netherlands. http://www.highvolteng.com/media/Brochures/Singletron_broch.pdf (visited on 17 May 2017)
  29. 29.
    K. Bethge, G. Walter, B. Wiedemann. Kernphysik. 2nd edn. (Springer, 2001). 196 ff. ISBN: 978-3-540-74567-9Google Scholar
  30. 30.
    J. Lilley. Nuclear Physics. Principles and Applications. Repr. with Corrections 2006. (Wiley, 2001). ISBN: 978-0-471-97936-4Google Scholar
  31. 31.
    A.J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 113(12), 2841–2934 (2012). ISSN: 0090-3752.  https://doi.org/10.1016/j.nds.2012.11.002. http://www.sciencedirect.com/science/article/pii/S0090375212000889ADSCrossRefGoogle Scholar
  32. 32.
    Passage of particles through matter, in: 2016 Review of Particle Physics. Ed. by C. Patrignani et al. Revised Jan. 2012 by H. Bichsel, D.E. Groom, S.R. Klein. June 18, 2012, pp. 18–20. http://pdg.lbl.gov/2013/reviews/rpp2012-rev-passage-particles-matter.pdf (visited on 28 Apr 2017)
  33. 33.
    H.A. Kramers. XCIII. On the theory of X-ray absorption and of the continuous X-ray spectrum. In: Philosophical Magazine Series 6 46.275, 1923, pp. 836–871.  https://doi.org/10.1080/14786442308565244CrossRefGoogle Scholar
  34. 34.
    G.C. Baldwin, G.S. Klaiber, Photo-fission in heavy elements. Phys. Rev. 71(1), 3–10 (1947).  https://doi.org/10.1103/PhysRev.71.3ADSCrossRefGoogle Scholar
  35. 35.
    C. Segebade, H.P. Weise, G.J. Lutz, Photon Activation Analysis. Berlin, Germany: de Gruyter (1988). ISBN 3-11-007250-5Google Scholar
  36. 36.
    Y. Otake, Introduction of RIKEN miniature neutron source system “RANS”. Technical Report Japan (2013). http://rans.riken.jp/pdf/14012401.pdf
  37. 37.
    Y. Yamagata, J. Ju, K. Hirota, Neutron generation source, and neutron generation device. EP Patent App. EP20130757266 (Japan) (2015). http://www.google.com/patents/EP2824999A1?cl=en
  38. 38.
    H. Kumada et al., Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 106, 78–83 (2015). The 16th International Congress on Neutron Capture Therapy (ICNCT-16). Representative person of the Organizing Committee: Dr Hanna Koivunoro (Secretary general of the ICNCT-16). ISSN: 0969-8043.  https://doi.org/10.1016/j.apradiso.2015.07.033. http://www.sciencedirect.com/science/article/pii/S0969804315301159CrossRefGoogle Scholar
  39. 39.
    T. Rinckel, D.V. Baxter, J. Doskow, P.E. Sokol, T. Todd, Target performance at the low energy neutron source. Phys. Procedia 26, 168–177 (2012). ISSN: 1875-3892.  https://doi.org/10.1016/j.phpro.2012.03.022. http://www.sciencedirect.com/science/article/pii/S1875389212004385ADSCrossRefGoogle Scholar
  40. 40.
    H. Kumada et al., Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 106, 78–83 (2015). The 16th International Congress on Neutron Capture Therapy (ICNCT-16). Representative person of the Organizing Committee: Dr Hanna Koivunoro (Secretary general of the ICNCT-16). ISSN: 0969-8043.  https://doi.org/10.1016/j.apradiso.2015.07.033. http://www.sciencedirect.com/science/article/pii/S0969804315301159CrossRefGoogle Scholar
  41. 41.
    P. Zakalek, Development of high-brilliant neutron source targets. Workshop Presentation in Unkel, Germany. Jülich Center for Neutron Science 2, Forschungszentrum Jülich (2016)Google Scholar
  42. 42.
    H. Wipf, Solubility and diffusion of hydrogen in pure metals and alloys. Phys. Scr. 2001.T94, 43 (2001). http://stacks.iop.org/1402-4896/2001/i=T94/a=006ADSCrossRefGoogle Scholar
  43. 43.
    G. Alefeld, J. Völkl (eds.), Hydrogen in Metals I. Basic Properties. Vol. 28. Topics in Applied Physics (Springer, Heidelberg, 1978). ISBN: 978-3- 540-08705-2.  https://doi.org/10.1007/3-540-08705-2Google Scholar
  44. 44.
    E. Abramov, M.P. Riehm, D.A. Thompson, W.W. Smeltzer, Deuterium permeation and diffusion in high-purity beryllium. J. Nucl. Mater. 175(1), 90–95 (1990). ISSN: 0022-3115.  https://doi.org/10.1016/0022-3115(90)90274-QADSCrossRefGoogle Scholar
  45. 45.
    P. Zakalek et al., Temperature profiles inside a target irradiated with protons or deuterons for the development of a compact accelerator driven neutron source. Phys. B Condens. Matter ISSN, 0921–4526 (2018).  https://doi.org/10.1016/j.physb.2018.01.049CrossRefGoogle Scholar
  46. 46.
    S. Gary, Was (Springer, Fundamentals of Radiation Materials Science. Metals and Alloys, 2007). ISBN: 978-3-540-49471-3.  https://doi.org/10.1007/978-3-540-49472-0
  47. 47.
    Y. Dai et al., Assessment of the lifetime of the beam window of MEGAPIE target liquid metal container. J. Nucl. Mater. 356(1), 308–320 (2006). Proceedings of the Seventh International Workshop on Spallation Materials Technology. ISSN: 0022-3115.  https://doi.org/10.1016/j.jnucmat.2006.05.036ADSCrossRefGoogle Scholar
  48. 48.
    M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33(1), 50–54 (1975). ISSN: 0029-5493.  https://doi.org/10.1016/0029-5493(75)90035-7CrossRefGoogle Scholar
  49. 49.
    R.E. MacFarlane, The NJOY Nuclear Data Processing System, Version 2012. Ed. by A. C. Kahler. LA-UR-12-27079. Technical Report Los Alamos National Laboratory (2012). http://t2.lanl.gov/nis/publications/NJOY2012.pdf
  50. 50.
    B.L. Cohen, T.H. Handley, experimental studies of (p, t) reactions. Phys. Rev. 93(3), 514–517 (1954).  https://doi.org/10.1103/PhysRev.93.514ADSCrossRefGoogle Scholar
  51. 51.
    F.J. Bermejo, F. Sordo, ESS-Bilbao Target station. Technical Design Report. ESS-Bilbao Target Devision, p. 33 (2013). ISRN: 978-84-695-8105-6. http://www.essbilbao.org/index.php/en/component/docman/doc_download/417-essb-ntar-2013-final-tdr-july
  52. 52.
    D. Emendörfer, K.H. Höcker, Theorie der Kernreaktoren, vol. 2, Stuttgart, Germany (1969). ISBN: 3-411-01599-3Google Scholar
  53. 53.
    D.E. Parks, M.S. Nelkin, J.R. Beyster, N.F. Wikner. SlowNeutron Scattering and Thermalization (W. A. Benjamin Inc., New York, 1970)Google Scholar
  54. 54.
    R.E. MacFarlane, New Thermal Neutron Scattering Files for ENDF/B-VI Release 2. LA-12639-MS. Los Alamos National Laboratory, USA, Mar 1994. https://t2.lanl.gov/nis/publications/thermal.pdf (visited on 06/21/2017)
  55. 55.
    THERMR. Incoherent Inelastic Scattering. Los Alamos National Laboratory (2013). http://t2.lanl.gov/nis/njoy/ther02.html (visited on 05/25/2017)
  56. 56.
    C.M. Lavelle et al., Neutronic design and measured performance of the Low Energy Neutron Source (LENS) target moderator reflector assembly. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 587(2–3), 324–341 (2008). ISSN: 0168-9002.  https://doi.org/10.1016/j.nima.2007.12.044. http://www.sciencedirect.com/science/article/pii/S0168900208000028ADSCrossRefGoogle Scholar
  57. 57.
    T.A. Broome, Prospects for targets and methane moderators at ISIS, in Proceedings of the Meetings ICANS-XIII and ESS-PM4 2 (1995). ISSN: 1019-6447. https://inis.iaea.org/search/searchsinglerecord.aspx?RN=27061066
  58. 58.
    Q.X. Feng et al., The solution of cold neutron source using solid methane moderator for the CPHS. Phys. Procedia 26, 49–54 (2012). ISSN: 1875-3892.  https://doi.org/10.1016/j.phpro.2012.03.008. http://www.sciencedirect.com/science/article/pii/S1875389212004245ADSCrossRefGoogle Scholar
  59. 59.
    J.M. Carpenter, Thermally activated release of stored chemical energy in cryogenic media. Nature 330, 358–360 (1987). ISSN: 0028-0836.  https://doi.org/10.1038/330358a0ADSCrossRefGoogle Scholar
  60. 60.
    E. Shabalin et al., Experimental study of swelling of irradiated solid methane during annealing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266(24), 5126–5131 (2008). ISSN: 0168-583X.  https://doi.org/10.1016/j.nimb.2008.09.022. http://www.sciencedirect.com/science/article/pii/S0168583X08010379CrossRefGoogle Scholar
  61. 61.
    M. Huerta Parajon, E. Abad, F.J. Bermejo, A review of the cold neutron moderator materials: neutronic performance and radiation effects. Phys. Procedia 60, 74–82 (2014). ISSN: 1875-3892.  https://doi.org/10.1016/j.phpro.2014.11.012. http://www.sciencedirect.com/science/article/pii/S1875389214005598CrossRefGoogle Scholar
  62. 62.
    V. Ananiev et al., Pelletized cold moderator of the IBR-2 reactor: current status and future development. J. Phys. Conf. Ser. 746(1) (2016).  https://doi.org/10.1088/1742-6596/746/1/012031Google Scholar
  63. 63.
    J. Van Kranendonk, Solid Hydrogen. Theory of the Properties of Solid \(H_{2}\), HD, and \(D_{2}\). Springer US (1983). ISBN: 978-1-4684-4303-5.  https://doi.org/10.1007/978-1-4684-4301-1CrossRefGoogle Scholar
  64. 64.
    K.B. Grammer et al., Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission. Phys. Rev. B 91(18) (2015).  https://doi.org/10.1103/PhysRevB.91.180301
  65. 65.
    K. Batkov, A. Takibayev, L. Zanini, F. Mezei, Unperturbed moderator brightness in pulsed neutron sources. Nucl. Instrum. Methods A Accel. Spectrometers Detect. Assoc. Equip. 729, 500–505 (2013). ISSN: 0168- 9002.  https://doi.org/10.1016/j.nima.2013.07.031. http://www.sciencedirect.com/science/article/pii/S0168900213010073ADSCrossRefGoogle Scholar
  66. 66.
    Ferenc Mezei et al., Low dimensional neutron moderators for enhanced source brightness. J. Neutron Res. 17(2), 101–105 (2014).  https://doi.org/10.3233/JNR-140013. https://arxiv.org/pdf/1311.2474
  67. 67.
    V.F. Sears. Neutron Optics. An introduction to the theory of neutron optical phenomena and their applications (Oxford University Press, 1989). ISBN: 978-0195046014Google Scholar
  68. 68.
    T. Brückel, D. Richter, G. Roth, A. Wischnewski, R. Zorn (eds.), Neutron Scattering: Lectures, vol. 106. Schlüsseltechnologien/Key Technologies. Forschungszentrum Jülich GmbH (2015). ISBN 978-3-95806-055-5Google Scholar
  69. 69.
    T. Chupp, Neutron Optics and Polarization. Presentation at the Summerschool on Neutron Research. NIST Center for Neutron Research (2009). https://www.ncnr.nist.gov/summerschool/ss09/pdf/Chupp_FP09.pdf (visited on 06/15/2017)
  70. 70.
    N. Metropolis, S. Ulam, The monte carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949). PMID: 18139350.  https://doi.org/10.1080/01621459.1949.10483310MathSciNetCrossRefGoogle Scholar
  71. 71.
    X-5 Monte Carlo Team. MCNP - A General N-Particle Transport Code, Version 5. LA-UR-03-1987. Technical Report Los Alamos National Laboratory, 1 Feb 2008. https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf
  72. 72.
    D.B. Pelowitz (ed.), MCNPX Users Manual Version 2.7.0. LA-CP-11-00438. Los Alamos, USA (2011)Google Scholar
  73. 73.
    P. Sauvan, J. Sanz, F. Ogando, New capabilities for Monte Carlo simulation of deuteron transport and secondary products generation. Nucl. Instrum. Methods Phys. Res. (Section A) 614(3), 323–330 (2010). ISSN: 0168-9002.  https://doi.org/10.1016/j.nima.2009.12.084. http://www.sciencedirect.com/science/article/pii/S0168900209024255/pdfft?md5=2e82c9c5e77cab8bf504087eaf062bbe&pid=1-s2.0-S0168900209024255-main.pdfADSCrossRefGoogle Scholar
  74. 74.
    T. Goorley et al., Initial MCNP6 release overview. Nucl. Technol. 180(3), 298–315 (2012).  https://doi.org/10.13182/NT11-135CrossRefGoogle Scholar
  75. 75.
    M. Loeve, Probability theory I, in Graduate Texts in Mathematics, 4th edn., vol. 45 (Springer New York, 1977). ISBN: 978-0-387-90210-4.  https://doi.org/10.1007/978-1-4684-9464-8zbMATHGoogle Scholar
  76. 76.
    J. Rice. Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, 1995). ISBN: 0-534-20934-3Google Scholar
  77. 77.
    Optimsmoose. File:Some probability distribution.png. The copyright holder of this work releases this work into the public domain. This applies worldwide. 5 Jan 2011. https://upload.wikimedia.org/wimimedia/commons/e/e5/Some_probability_distribution.png (visited on 24 May 2017)
  78. 78.
    Pekaje. File: Accuracy and precision.svg. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation (2007). https://upload.wikimedia.org/wikipedia/commons/3/38/Accuracy_and_precision.svg (visited on 24 May 2017)
  79. 79.
    J.C. Wagner, D.E. Peplow, S.W. Mosher, FW-CADIS method for global and regional variance reduction of monte carlo radiation transport calculations. Nucl. Sci. Eng. 176(1), 37–57 (2014).  https://doi.org/10.13182/NSE12-33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Georesources and Materials Engineering, Institute for Nuclear Engineering and Technology Transfer (NET)RWTH Aachen UniversityAachenGermany

Personalised recommendations