Processor in the Loop for Testing Series Motor Four Quadrants Drive Direct Current Chopper for Series Motor Driven Electric Car

Part1: Chopper Operation Modes Testing
  • S. ArofEmail author
  • N. H. Diyanah
  • N. M. Yaakop
  • P. A. Mawby
  • H. Arof
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 102)


This paper describes the process of testing a four quadrant drive direct current (DC) chopper (FQDC) that controls a DC series motor using the processor in the loop (PIL) technique. The DC motor serves as a propeller to an electric vehicle (EV). The main function of the four quadrant drive chopper is to provide a smooth operation for the electric vehicle(EV) while optimizing battery power consumption and maximizing distance traversed. In the processor in the loop (PIL) test, MATLAB/Simulink environment was used as the platform for the four quadrants drive chopper and electric vehicle, whereas in the hardware part, the FQDC was controlled by three PIC microcontrollers. Serial communication was used as the channel of data transfer between the hardware and software. The simulation results of the ATLAB/Simulink indicate that the FQDC controller was able to control the DC motor that drove the EV. Overall, the PIL technique was suitable for testing and validating the operation of the FQDC, its controllers and the control algorithm.


Direct current drive Electric vehicle and hybrid electric vehicle Series motor Four quadrant drive chopper 


  1. 1.
    Gao, Y., Ehsani, M.: Design and control methodology of plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron 57(2), 633–640 (2010)CrossRefGoogle Scholar
  2. 2.
    Oak Ridge National Laboratory.: Advanced Brush Technology for DC Motors (2009). Available:
  3. 3.
    Heinrich, Walter Rentsch, Herbert Dr.-Ing, ABB Industry: “Guide to Variable Speed Drives,” Technical Guide No. 41180 D-68619 LAMPERTHEIM, Germany, 3ADW 000 059 R0201 REV B (02.01), DCS 400/DCS 500/DCS 600: ABB 2003Google Scholar
  4. 4.
    Bansal, R.C.: Birla Institute of Technology and Science, Pilani, India. Electric Vehicle, Handbook of Automotive Power Electronics and Motor Drives, Taylor & Francise Group CRC Press (2005)Google Scholar
  5. 5.
    Rashid, M.H.: Power Electronics, Circuits, Devices and Applications, 3rd edn. Prentice Hall (2004)Google Scholar
  6. 6.
    Arof, S., Yaakob, N.M., Jalil, J.A., Mawby, P.A., Arof, H.: Series motor four quadrants drive DC chopper, Part 1: Overall. In: International Conference on Power Electronics (2014)Google Scholar
  7. 7.
    Arof, S., Hassan, H., Rosyidi, M., Mawby, P.A., Arof, H.: Implementation of series motor four quadrants drive DC chopper for DC drive electric car and LRT via simulation model. J. Appl. Environ. Biol. Sci. 7(3S), 73–82 (2017)Google Scholar
  8. 8.
    Tipsumanporn, V., Thepsathorn, P., Piyarat, W., Numsomran, A., Bun jungjit, S.: 4—Quadrant DC Motor drive Control By BRM Technique. Warwick University—IEEE. Proceedings IPEMC 2000. Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435) (2002)Google Scholar
  9. 9.
    Amjadi, Z., Williamson, S.S.: Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Trans. Ind. Electron. 57(2), 608–616 (2010)CrossRefGoogle Scholar
  10. 10.
    Ghao, D.W., Mi, C., Emadi, A.: Modelling and simulation of electric and hybrid vehicles. Proc. IEEE 95(4), 729–745 (2007)CrossRefGoogle Scholar
  11. 11.
    Higashikawa, K., Tajima, M., Urasaki, S., Inoue, M., Fukumoto, Y., Tomita, M., Kiss, T.: Hardware-in-the-loop simulation on fault current limiting operation of RE-123 coated conductors under the influence of spatial inhomogeneity. IEEE Trans. Appl. Supercond. 28(4) (2018)CrossRefGoogle Scholar
  12. 12.
    Mina, J., Flores, Z., López, E., Pérez, A., Calleja, J.-H.: Processor-in-the-loop and hardware-in-the-loop simulation of electric systems based in FPGA. In: 2016 13th International Conference on Power Electronics (CIEP) (2016).
  13. 13.
    Ruba, M., Hunor, N., Hedesiu, H., Martis, C.: FPGA based processor in the loop analysis of variable reluctance machine with speed control. In: 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) (2016).
  14. 14.
    Lee, S., Bang, H., Lee, D.: Predictive ground collision avoidance system for UAV applications: PGCAS design for fixed-wing UAVs and processor in the loop simulation. In: International Conference on Unmanned Aircraft Systems (ICUAS), IEEE (2016).
  15. 15.
    Arof, S., Muhd Khairulzaman, A.K., Jalil, J.A., Arof, H., Mawby, P.A.: Self tuning fuzzy logic controlling chopper operation of four quadrants drive DC chopper for low cost electric vehicle. In: 6th International Conference on Intelligent Systems, Modeling and Simulation, IEEE Computer Society, pp. 40–24 (2015).
  16. 16.
    Arof, S., Muhd Khairulzaman, A.K., Jalil, J.A., Arof, H., Mawby, P.A.: Artificial intelligence controlling chopper operation of four quadrants drive DC Chopper for low cost electric vehicle. Int. J. Simul. Sci. Technol. 16(4), 3.1–3.10 (2015). Scholar
  17. 17.
    Ching, T.W.: Soft-switching converters for EV propulsion. J. Asian Electric Veh. 5(2) (2007)Google Scholar
  18. 18.
    Arof, S. Jalil, J.A., Kamaruddin, N.H., Yaakop, N.M., Mawby, P.A., Arof, H.: Series motor four quadrants drive DC chopper Part 2: driving and reverse with direct current control, pp. 775–780. In: International Conference on Power Electronics. (978-1-5090-2547-3/16)
  19. 19.
    Arof, S., Noor, N.M., Elias, F., Mawby, P.A., Arof, H.: Investigation of chopper operation of series motor four quadrants DC Chopper. J. Appl. Environ. Biol. Sci. 7(3), 49–56 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. Arof
    • 1
    • 2
    Email author
  • N. H. Diyanah
    • 1
  • N. M. Yaakop
    • 1
  • P. A. Mawby
    • 2
  • H. Arof
    • 3
  1. 1.Malaysian Spanish Institute, Universiti Kuala LumpurKulimMalaysia
  2. 2.University of Warwick School of EngineeringCoventryUK
  3. 3.Engineering DepartmentUniversiti Malaya, Jalan UniversitiKuala LumpurMalaysia

Personalised recommendations