Adaptive and Personalized Systems Based on Semantics

  • Pasquale LopsEmail author
  • Cataldo Musto
  • Fedelucio Narducci
  • Giovanni Semeraro


In the introduction of this book, we have thoroughly discussed the importance of adaptive and personalized systems in a broad range of applications. In particular, we have motivated the use of content-based information and textual data, and we have analyzed all the possible limitations of approaches based on keyword-based representation. In this chapter, we will focus on the application of semantics-aware representation techniques in recommender systems, user modeling, and social media analysis, and we will show how the exploitation of enhanced representation leads to an improvement of the results.


  1. 1.
    Adamopoulos P, Tuzhilin A (2014) On over-specialization and concentration bias of recommendations: probabilistic neighborhood selection in collaborative filtering systems. In: Kobsa A, Zhou MX, Ester M, Koren Y (eds) Eighth ACM conference on recommender systems, RecSys ’14, Foster City, Silicon Valley, CA, USA, 06–10 Oct 2014. ACM, pp 153–160.
  2. 2.
    Adomavicius G, Tuzhilin A (2015) Context-aware recommender systems. In: Recommender systems handbook. Springer, New York, pp 191–226CrossRefGoogle Scholar
  3. 3.
    Allisio L, Mussa V, Bosco C, Patti V, Ruffo G (2013) Felicittà: visualizing and estimating happiness in Italian cities from geotagged Tweets. In: ESSEM@ AI* IA, Citeseer, pp 95–106Google Scholar
  4. 4.
    Armentano M, Godoy D, Amandi A (2013) Followee recommendation based on text analysis of micro-blogging activity. Inf Syst 38(8):1116–1127., Scholar
  5. 5.
    Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) DBpedia: a nucleus for a web of open data. In: The semantic web, 6th international semantic web conference, 2nd Asian semantic web conference, ISWC 2007 + ASWC 2007, Springer, Lecture Notes in Computer Science, vol 4825, pp 722-735Google Scholar
  6. 6.
    Basile P, de Gemmis M, Lops P, Semeraro G (2016) Solving a complex language game by using knowledge-based word associations discovery. IEEE Trans Comput Intell AI Games 8(1):13–26CrossRefGoogle Scholar
  7. 7.
    Basile P, Greco C, Suglia A, Semeraro G (2018) Deep learning and hierarchical reinforcement learning for modeling a conversational recommender system. Intell Artif 12(2):125–141Google Scholar
  8. 8.
    Basile P, Caputo A, Semeraro G (2014) An enhanced lesk word sense disambiguation algorithm through a distributional semantic model. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, Dublin City University and Association for Computational Linguistics, Dublin, Ireland, pp 1591–1600Google Scholar
  9. 9.
    Basile P, Caputo A, Semeraro G (2015) UNIBA: combining distributional semantic models and sense distribution for multilingual all-words sense disambiguation and entity linking. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), Association for Computational Linguistics, Denver, Colorado, pp 360–364Google Scholar
  10. 10.
    Batmaz Z, Yurekli A, Bilge A, Kaleli C (2018) A review on deep learning for recommender systems: challenges and remedies. Artif Intell Rev 1–37CrossRefGoogle Scholar
  11. 11.
    Bilgic M, Mooney R (2005) Explaining recommendations: satisfaction vs. promotion. In: Beyond personalization, IUI WS, vol 5Google Scholar
  12. 12.
    Bizer C (2009) The emerging web of linked data. IEEE Intell Syst 24(5):87–92CrossRefGoogle Scholar
  13. 13.
    Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1–8CrossRefGoogle Scholar
  14. 14.
    Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative filtering. In: Cooper GF, Moral S (eds) Proceedings of the fourteenth conference on uncertainty in artificial intelligence. Morgan Kaufmann, pp 43–52Google Scholar
  15. 15.
    Bridge DG (2002) Towards conversational recommender systems: a dialogue grammar approach. In: ECCBR workshops, pp 9–22Google Scholar
  16. 16.
    Campos J, de Figueiredo AD (2001) Searching the unsearchable: inducing serendipitous insights. In: Proceedings of the workshop program at the fourth international conference on case-based reasoning, ICCBR, pp 159–164Google Scholar
  17. 17.
    Chang S, Harper FM, Terveen LG (2016) Crowd-based personalized natural language explanations for recommendations. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 175–182Google Scholar
  18. 18.
    Chen W, Hsu W, Lee ML (2013) Tagcloud-based explanation with feedback for recommender systems. In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval, SIGIR ’13. ACM, New York, pp 945–948.
  19. 19.
    Chen L, Wang F (2017) Explaining recommendations based on feature sentiments in product reviews. In: Proceedings of the 22nd international conference on intelligent user interfaces. ACM, pp 17–28Google Scholar
  20. 20.
    Cimiano P, Schultz A, Sizov S, Sorg P, Staab S (2009) Explicit versus latent concept models for cross-language information retrieval. IJCAI 9:1513–1518Google Scholar
  21. 21.
    Collins AM, Loftus EF (1975) A spreading activation theory of semantic processing. Psychol Rev 82(6):407–428CrossRefGoogle Scholar
  22. 22.
    Cramer H, Evers V, Ramlal S, Van Someren M, Rutledge L, Stash N, Aroyo L, Wielinga B (2008) The effects of transparency on trust in and acceptance of a content-based art recommender. User Model User-Adapt Interact 18(5):455–496CrossRefGoogle Scholar
  23. 23.
    Davis MW, Dunning TE (1995) A TREC evaluation of query translation methods for multilingual text retrieval. In: Proceedings of TREC conference, pp 483–497Google Scholar
  24. 24.
    de Gemmis M, Lops P, Semeraro G, Musto C (2015a) An investigation on the serendipity problem in recommender systems. Inf Process Manag 51(5):695–717. Scholar
  25. 25.
    de Gemmis M, Lops P, Musto C, Narducci F, Semeraro G (2015b) Semantics-aware content-based recommender systems. In: Rokach L, Shapira B, Ricci F (eds) Recommender systems handbook. Springer, Boston, pp 119–159Google Scholar
  26. 26.
    Degemmis M, Lops P, Semeraro G (2007) A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Model User-Adapt Interact 17(3):217–255CrossRefGoogle Scholar
  27. 27.
    Degemmis M, Lops P, Semeraro G, Basile P (2008) Integrating tags in a semantic content-based recommender. In: Pu P, Bridge DG, Mobasher B, Ricci F (eds) Proceedings of the 2008 ACM conference on recommender systems, RecSys 2008. ACM, pp 163–170Google Scholar
  28. 28.
    Di Noia T, Mirizzi R, Ostuni VC, Romito D (2012a) Exploiting the web of data in model-based recommender systems. In: Proceedings of the sixth ACM conference on Recommender Systems. ACM, pp 253–256Google Scholar
  29. 29.
    Di Noia T, Mirizzi R, Ostuni VC, Romito D, Zanker M (2012b) Linked open data to support content-based recommender systems. In: I-SEMANTICS. ACM, pp 1–8Google Scholar
  30. 30.
    Di Noia T, Ostuni VC, Tomeo P, Di Sciascio E (2016) Sprank: semantic path-based ranking for top-N recommendations using linked open data. ACM TIST 8(1):9:1–9:34CrossRefGoogle Scholar
  31. 31.
    Dodge J, Gane A, Zhang X, Bordes A, Chopra S, Miller A, Szlam A, Weston J (2015) Evaluating prerequisite qualities for learning end-to-end dialog systems. arXiv preprint arXiv:151106931
  32. 32.
    Dunlop MD (1997) The effect of accessing nonmatching documents on relevance feedback. ACM Trans Inf Syst 15:137–153CrossRefGoogle Scholar
  33. 33.
    Esuli A, Sebastiani F (2006) SentiWordNet: a publicly available lexical resource for opinion mining. Proc LREC 6:417–422Google Scholar
  34. 34.
    Ferragina P, Scaiella U (2012) Fast and accurate annotation of short texts with Wikipedia pages. IEEE Softw 29(1):70–75CrossRefGoogle Scholar
  35. 35.
    Friedrich G, Zanker M (2011) A taxonomy for generating explanations in recommender systems. AI Mag 32(3):90–98CrossRefGoogle Scholar
  36. 36.
    Gabrilovich E, Markovitch S (2009) Wikipedia-based semantic interpretation for natural language processing. J Artif Intell Res (JAIR) 34:443–498zbMATHCrossRefGoogle Scholar
  37. 37.
    Gedikli F, Jannach D, Ge M (2014) How should I explain? A comparison of different explanation types for recommender systems. Int J Hum-Comput Stud 72(4):367–382CrossRefGoogle Scholar
  38. 38.
    Goker M, Thompson C (2000) The adaptive place advisor: a conversational recommendation system. In: Proceedings of the 8th German workshop on case based reasoning, Citeseer, pp 187–198Google Scholar
  39. 39.
    Grasch P, Felfernig A, Reinfrank F (2013) Recomment: towards critiquing-based recommendation with speech interaction. In: Proceedings of the 7th ACM conference on recommender systems, RecSys ’13. ACM, New York, pp 157–164.
  40. 40.
    Harris ZS (1968) Mathematical structures of language. Interscience, New YorkzbMATHGoogle Scholar
  41. 41.
    Hassanzadeh O, Consens MP (2009) Linked movie data base. In: CBizer, Heath T, Berners-Lee T, Idehen K (eds) Proceedings of the WWW 2009 workshop on linked data on the web, LDOW 2009,, CEUR workshop proceedings, vol 538Google Scholar
  42. 42.
    Haveliwala TH (2003) Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans Knowl Data Eng 15(4):784–796CrossRefGoogle Scholar
  43. 43.
    He C, Parra D, Verbert K (2016) Interactive recommender systems: a survey of the state of the art and future research challenges and opportunities. Expert Syst Appl 56:9–27. Scholar
  44. 44.
    Heckel R, Vlachos M, Parnell T, Duenner C (2017) Scalable and interpretable product recommendations via overlapping co-clustering. In: 2017 IEEE 33rd international conference on data engineering (ICDE). IEEE, pp 1033–1044Google Scholar
  45. 45.
    Heitmann B, Hayes C (2010) Using linked data to build open, collaborative recommender systems. In: AAAI spring symposium: linked data meets artificial intelligence, AAAI, pp 76–81Google Scholar
  46. 46.
    Herlocker JL, Konstan JA, Riedl J (2000) Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM conference on computer supported cooperative work, pp 241–250Google Scholar
  47. 47.
    Herlocker L, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5–53CrossRefGoogle Scholar
  48. 48.
    Hurley N, Zhang M (2011) Novelty and diversity in Top-N recommendation—analysis and evaluation. ACM Trans Internet Technol 10(4):14CrossRefGoogle Scholar
  49. 49.
    Iaquinta L, de Gemmis M, Lops P, Semeraro G, Filannino M, Molino P (2008) Introducing serendipity in a content-based recommender system. In: Xhafa F, Herrera F, Abraham A, Köppen M, Benítez JM (eds) 8th International conference on hybrid intelligent systems. IEEE Computer Society, pp 168–173Google Scholar
  50. 50.
    Ilievski V, Musat C, Hossmann A, Baeriswyl M (2018) Goal-oriented chatbot dialog management bootstrapping with transfer learning. CoRR abs/1802.00500
  51. 51.
    Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. Springer, BerlinGoogle Scholar
  52. 52.
    Johnson H, Johnson P (1993) Explanation facilities and interactive systems. In: Proceedings of the 1st international conference on intelligent user interfaces. ACM, pp 159–166Google Scholar
  53. 53.
    Jolliffe I (2002) Principal component analysis. Wiley Online LibraryGoogle Scholar
  54. 54.
    Jugovac M, Jannach D (2017) Interacting with recommenders—overview and research directions. ACM Trans Interact Intell Syst 7(3):10:1–10:46. Scholar
  55. 55.
    Kaminskas M, Bridge D (2017) Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. TiiS 7(1):2:1–2:42CrossRefGoogle Scholar
  56. 56.
    Kanerva P (1988) Sparse distributed memory. MIT, BradfordGoogle Scholar
  57. 57.
    Knijnenburg BP, Willemsen MC, Gantner Z, Soncu H, Newell C (2012) Explaining the user experience of recommender systems. User Model User-Adapt Interact 22(4–5):441–504CrossRefGoogle Scholar
  58. 58.
    Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30–37CrossRefGoogle Scholar
  59. 59.
    Lawrence R, Melville P, Perlich C, Sindhwani V, Meliksetian S, Hsueh P, Liu Y (2010) Social media analytics. OR/MS TODAY, pp 26–30Google Scholar
  60. 60.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRefGoogle Scholar
  61. 61.
    Li R, Kahou SE, Schulz H, Michalski V, Charlin L, Pal C (2018) Towards deep conversational recommendations. In: Advances in neural information processing systems, pp 9748–9758Google Scholar
  62. 62.
    Lops P, Musto C, Narducci F, De Gemmis M, Basile P, Semeraro G (2010a) Cross-language personalization through a semantic content-based recommender system. In: Artificial intelligence: methodology, systems, and applications. Springer, Berlin, pp 52–60CrossRefGoogle Scholar
  63. 63.
    Lops P, Musto C, Narducci F, De Gemmis M, Basile P, Semeraro G (2010b) Mars: a multilanguage recommender system. In: Proceedings of the 1st international workshop on information heterogeneity and fusion in recommender systems, HetRec ’10. ACM, New York, pp 24–31.
  64. 64.
    Lovasz L (1996) Random walks on graphs: a survey. Combinatronics 2:1–46MathSciNetzbMATHGoogle Scholar
  65. 65.
    Maccatrozzo V (2012) Burst the filter bubble: using semantic web to enable serendipity. In: Proceedings of the 11th international conference on the semantic web—Volume Part II, ISWC’12. Springer, Berlin, pp 391–398. Scholar
  66. 66.
    Maccatrozzo V, Terstall M, Aroyo L, Schreiber G (2017) SIRUP: serendipity in recommendations via user perceptions. In: Papadopoulos GA, Kuflik T, Chen F, Duarte C, Fu W (eds) Proceedings of the 22nd international conference on intelligent user interfaces, IUI 2017, Limassol, Cyprus, 13–16 March 2017. ACM, pp 35–44Google Scholar
  67. 67.
    Magnini B, Strapparava C (2001) Improving user modelling with content-based techniques. In: Proceedings of 8th international conference on user modeling. Springer, Berlin, pp 74–83zbMATHCrossRefGoogle Scholar
  68. 68.
    Mahmood T, Ricci F (2009) Improving recommender systems with adaptive conversational strategies. In: Proceedings of the 20th ACM conference on hypertext and hypermedia. ACM, pp 73–82Google Scholar
  69. 69.
    McCallum A, Nigam K (1998) A comparison of event models for Naïve bayes text classification. In: Proceedings of the AAAI/ICML-98 workshop on learning for text categorization. AAAI Press, pp 41–48Google Scholar
  70. 70.
    Mcginty L, Smyth B (2006) Adaptive selection: an analysis of critiquing and preference-based feedback in conversational recommender systems. Int J Electron Commer 11(2):35–57CrossRefGoogle Scholar
  71. 71.
    McNee SM, Riedl J, Konstan JA (2006) Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: Olson GM, Jeffries R (eds) Extended abstracts proceedings of the 2006 conference on human factors in computing systems. ACM, pp 1097–1101Google Scholar
  72. 72.
    McSherry D (2005) Explanation in recommender systems. Artif Intell Rev 24(2):179–197zbMATHCrossRefGoogle Scholar
  73. 73.
    Melville P, Sindhwani V, Lawrence R (2009) Social media analytics: channeling the power of the blogosphere for marketing insight. In: Proceedings of the WINGoogle Scholar
  74. 74.
    Mendes PN, Jakob M, García-Silva A, Bizer C (2011) DBpedia spotlight: shedding light on the web of documents. In: Ghidini C, Ngomo AN, Lindstaedt SN, Pellegrini T (eds) Proceedings the 7th international conference on semantic systems, I-SEMANTICS 2011. ACM, pp 1–8Google Scholar
  75. 75.
    Muhammad KI, Lawlor A, Smyth B (2016) A live-user study of opinionated explanations for recommender systems. In: Proceedings of the 21st international conference on intelligent user interfaces. ACM, pp 256–260Google Scholar
  76. 76.
    Musto C (2010) Enhanced vector space models for content-based recommender systems. In: Proceedings of RecSys 2010. ACM, pp 361–364.
  77. 77.
    Musto C, Narducci F, Basile P, Lops P, de Gemmis M, Semeraro G (2011a) Cross-language information filtering: word sense disambiguation vs. distributional models. In: Proceedings of AI*IA 2011: artificial intelligence around man and beyond—XIIth international conference of the Italian association for artificial intelligence, Lecture Notes in Computer Science, vol 6934. Springer, Berlin, pp 250–261CrossRefGoogle Scholar
  78. 78.
    Musto C, Semeraro G, Lops P, de Gemmis M (2011a) Random indexing and negative user preferences for enhancing content-based recommender systems. In: EC-Web 2011. Lecture Notes in Business Information Processing, vol 85. Springer, Berlin, pp 270–281Google Scholar
  79. 79.
    Musto C, Narducci F, Lops P, Semeraro G, de Gemmis M, Barbieri M, Korst J, Pronk V, Clout R (2012b) Enhanced semantic TV-show representation for personalized electronic program guides. In: International conference on user modeling, adaptation, and personalization. Springer, Berlin, pp 188–199CrossRefGoogle Scholar
  80. 80.
    Musto C, Semeraro G, Lops P, de Gemmis M, Narducci F (2012c) Leveraging social media sources to generate personalized music playlists. In: 13th International conference on e-commerce and web technologies, EC-Web 2012. Lecture Notes in Business Information Processing, vol 123. Springer, Berlin, pp 112–123Google Scholar
  81. 81.
    Musto C, Semeraro G, Lops P, de Gemmis M (2013) Contextual eVSM: a content-based context-aware recommendation framework based on distributional semantics. In: EC-Web. Lecture Notes in Business Information Processing, vol 152. Springer, Berlin, pp 125–136Google Scholar
  82. 82.
    Musto C, Basile P, Lops P, de Gemmis M, Semeraro G (2014) Linked Open Data-enabled strategies for top-n recommendations. In: Bogers T, Koolen M, Cantador I (eds) Proceedings of the 1st workshop on new trends in content-based recommender systems co-located with the 8th ACM conference on recommender systems, CBRecSys@RecSys 2014, Foster City, Silicon Valley, California, USA, 6 Oct 2014,, CEUR workshop proceedings, vol 1245, pp 49–56Google Scholar
  83. 83.
    Musto C, Semeraro G, Lops P, de Gemmis M (2015) Crowdpulse: a framework for real-time semantic analysis of social streams. Inf Syst 54:127–146CrossRefGoogle Scholar
  84. 84.
    Musto C, Narducci F, Lops P, de Gemmis M, Semeraro G (2016a) ExpLOD: a framework for explaining recommendations based on the linked open data cloud. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 151–154Google Scholar
  85. 85.
    Musto C, Semeraro G, de Gemmis M, Lops P (2016b) Learning word embeddings from Wikipedia for content-based recommender systems. In: European conference on information retrieval. Springer, Cham, pp 729–734Google Scholar
  86. 86.
    Musto C, Basile P, Lops P, de Gemmis M, Semeraro G (2017a) Introducing linked open data in graph-based recommender systems. Inf Process Manag 53(2):405–435CrossRefGoogle Scholar
  87. 87.
    Musto C, Lops P, de Gemmis M, Semeraro G (2017b) Semantics-aware recommender systems exploiting linked open data and graph-based features. Knowl-Based Syst 136:1–14CrossRefGoogle Scholar
  88. 88.
    Musto C, Semeraro G, de Gemmis M, Lops P (2017c) Tuning personalized pagerank for semantics-aware recommendations based on linked open data. In: Blomqvist E, Maynard D, Gangemi A, Hoekstra R, Hitzler P, Hartig O (eds) 14th International conference on the semantic web, ESWC 2017. Lecture Notes in Computer Science, vol 10249, pp 169–183CrossRefGoogle Scholar
  89. 89.
    Musto C, Semeraro G, Lovascio C, de Gemmis M, Lops P (2018) A framework for holistic user modeling merging heterogeneous digital footprints. In: Adjunct publication of the 26th conference on user modeling, adaptation and personalization. ACM, pp 97–101Google Scholar
  90. 90.
    Musto C, Lops P, de Gemmis M, Semeraro G (2019a) Justifying recommendations through aspect-based sentiment analysis of users reviews. In: Papadopoulos GA, Samaras G, Weibelzahl S, Jannach D, Santos OC (eds) Proceedings of the 27th ACM conference on user modeling, adaptation and personalization, UMAP 2019, Larnaca, Cyprus, 9–12 June 2019. ACM, pp 4–12Google Scholar
  91. 91.
    Musto C, Narducci F, Lops P, de Gemmis M, Semeraro G (2019b) Linked open data-based explanations for transparent recommender systems. Int J Hum-Comput Stud 121:93–107CrossRefGoogle Scholar
  92. 92.
    Narducci F, Basile P, Musto C, Lops P, Caputo A, de Gemmis M, Iaquinta L, Semeraro G (2016) Concept-based item representations for a cross-lingual content-based recommendation process. Inf Sci 374:15–31CrossRefGoogle Scholar
  93. 93.
    Narducci F, de Gemmis M, Lops P, Semeraro G (2018a) Improving the user experience with a conversational recommender system. In: International conference of the Italian association for artificial intelligence. Springer, Lecture Notes in Computer Science, vol 11298, pp 528–538Google Scholar
  94. 94.
    Narducci F, Musto C, de Gemmis M, Lops P, Semeraro G (2018b) Tv-program retrieval and classification: a comparison of approaches based on machine learning. Inf Syst Frontiers 20(6):1157–1171CrossRefGoogle Scholar
  95. 95.
    Narducci F, Palmonari M, Semeraro G (2017) Cross-lingual link discovery with TR-ESA. Inf Sci 394:68–87CrossRefGoogle Scholar
  96. 96.
    Narducci F, Musto C, Semeraro G, Lops P, De Gemmis M (2013a) Leveraging encyclopedic knowledge for transparent and serendipitous user profiles. In: International conference on user modeling, adaptation, and personalization. Springer, Berlin, pp 350–352CrossRefGoogle Scholar
  97. 97.
    Narducci F, Musto C, Semeraro G, Lops P, de Gemmis M (2013b) Exploiting big data for enhanced representations in content-based recommender systems. In: International conference on electronic commerce and web technologies. Springer, Berlin, pp 182–193Google Scholar
  98. 98.
    Narducci F, Palmonari M, Semeraro G (2013c) Cross-language semantic retrieval and linking of e-gov services. Lecture Notes in Computer Science (including subseries. Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8219. LNCS(PART 2), pp 130–145. Scholar
  99. 99.
    Nguyen TN, Ricci F (2017) Dynamic elicitation of user preferences in a chat-based group recommender system. In: Proceedings of the symposium on applied computing, SAC ’17. ACM, New York, pp 1685–1692.
  100. 100.
    Nunes I, Jannach D (2017) A systematic review and taxonomy of explanations in decision support and recommender systems. User Model User-Adap Interact 27(3–5):393–444CrossRefGoogle Scholar
  101. 101.
    Oard DW, Hackett PG (1997) Document translation for cross-language text retrieval at the University of Maryland. In: Information technology: the sixth text retrieval conference (TREC-6), pp 687–696Google Scholar
  102. 102.
    O’Connor B, Balasubramanyan R, Routledge BR, Smith NA (2010) From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the 4th international AAAI conference on weblogs and social media (ICWSM), vol 11, pp 122–129Google Scholar
  103. 103.
    Orsucci F, Paoloni G, Fulcheri M, Annunziato M, Meloni C (2012) Smart communities: social capital and psycho-social factors in smart citiesGoogle Scholar
  104. 104.
    Ostuni VC, Di Noia T, Di Sciascio E, Mirizzi R (2013) Top-N recommendations from implicit feedback leveraging linked open data. In: Proceedings of the seventh ACM conference on recommender systems. ACM, pp 85–92Google Scholar
  105. 105.
    Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Stanford InfoLabGoogle Scholar
  106. 106.
    Pang B, Lee L, et al (2008) Opinion mining and sentiment analysis. Found Trends® Inf Retr 2(1–2):1–135CrossRefGoogle Scholar
  107. 107.
    Passant A (2010a) dbrec—music recommendations using DBpedia. In: International semantic web conference, Revised Papers. LNCS, vol 6497. Springer, Berlin, pp 209–224Google Scholar
  108. 108.
    Passant A (2010b) Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI spring symposium: linked data meets artificial intelligence, AAAI, pp 93–98Google Scholar
  109. 109.
    Paul MJ, Dredze M (2011) You are what you tweet: analyzing Twitter for public health. In: Proceedings of the fifth international conference on weblogs and social media, The AAAI Press, pp 265–272Google Scholar
  110. 110.
    Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRefGoogle Scholar
  111. 111.
    Pianta E, Bentivogli L, Girardi C (2002) MultiWordNet: developing an aligned multilingual database. In: Proceedings of the first international conference on global WordNetGoogle Scholar
  112. 112.
    Raimond Y, Sandler MB (2008) A web of musical information. In: Bello JP, Chew E, Turnbull D (eds) International conference on music information retrieval, pp 263–268Google Scholar
  113. 113.
    Ricci F, Del Missier F (2004) Supporting travel decision making through personalized recommendation. In: Designing personalized user experiences in eCommerce. Springer, Dordrecht, pp 231–251CrossRefGoogle Scholar
  114. 114.
    Rocchio J (1971) Relevance feedback information retrieval. In: Salton G (ed) The SMART retrieval system—experiments in automated document processing. Prentice-Hall, Englewood Cliffs, NJ, pp 313–323Google Scholar
  115. 115.
    Rossetti M, Stella F, Zanker M (2013) Towards explaining latent factors with topic models in collaborative recommender systems. In: 2013 24th international workshop on database and expert systems applications (DEXA). IEEE, pp 162–167Google Scholar
  116. 116.
    Sahlgren M (2005) An introduction to random indexing. In: Proceedings of the methods and applications of semantic indexing workshop at the 7th international conference on terminology and knowledge engineering, TKEGoogle Scholar
  117. 117.
    Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on world wide web. ACM, pp 851–860Google Scholar
  118. 118.
    Schedl M, Hauger D, Schnitzer D (2012) A model for serendipitous music retrieval. In: Proceedings of the 2nd workshop on context-awareness in retrieval and recommendationGoogle Scholar
  119. 119.
    Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv (CSUR) 34(1):1–47MathSciNetCrossRefGoogle Scholar
  120. 120.
    Semeraro G, de Gemmis M, Lops P, Basile P (2012) An artificial player for a language game. IEEE Intell Syst 27(5):36–43CrossRefGoogle Scholar
  121. 121.
    Semeraro G, Degemmis M, Lops P, Basile P (2007) Combining learning and word sense disambiguation for intelligent user profiling. In: Veloso MM (ed) Proceedings of the 20th international joint conference on artificial intelligence, IJCAI 2007, Hyderabad, India, 6–12 Jan 2007, pp 2856–2861Google Scholar
  122. 122.
    Semeraro G, Lops P, Basile P, de Gemmis M (2009) Knowledge infusion into content-based recommender systems. In: Bergman LD, Tuzhilin A, Burke RD, Felfernig A, Schmidt-Thieme L (eds) Proceedings of the ACM conference on recommender systems, RecSys 2009. ACM, pp 301–304Google Scholar
  123. 123.
    Sorg P, Cimiano P (2012) Exploiting Wikipedia for cross-lingual and multilingual information retrieval. Data Knowl Eng 74:26–45CrossRefGoogle Scholar
  124. 124.
    Steichen B, Ghorab MR, O’Connor A, Lawless S, Wade V (2014) Towards personalized multilingual information access—exploring the browsing and search behavior of multilingual users. In: Dimitrova V, Kuflik T, Chin D, Ricci F, Dolog P, Houben G (eds) Proceedings of the 22nd International Conference on User Modeling, Adaptation, and Personalization, UMAP 2014. Lecture Notes in Computer Science. Springer, vol 8538, pp 435–446Google Scholar
  125. 125.
    Suglia A, Greco C, Basile P, Semeraro G, Caputo A (2017a) An automatic procedure for generating datasets for conversational recommender systems. In: CLEF (Working Notes)Google Scholar
  126. 126.
    Suglia A, Greco C, Musto C, de Gemmis M, Lops P, Semeraro G (2017b) A deep architecture for content-based recommendations exploiting recurrent neural networks. In: Bieliková M, Herder E, Cena F, Desmarais MC (eds) Proceedings of the 25th conference on user modeling, adaptation and personalization, UMAP 2017, Bratislava, Slovakia, 09–12 July 2017. ACM, pp 202–211.
  127. 127.
    Sun Y, Zhang Y, Chen Y, Jin R (2016) Conversational recommendation system with unsupervised learning. In: Proceedings of the 10th ACM conference on recommender systems. ACM, pp 397–398Google Scholar
  128. 128.
    Symeonidis P, Nanopoulos A, Manolopoulos Y (2009) MoviExplain: a recommender system with explanations. In: Proceedings of the third ACM conference on Recommender systems. ACM, pp 317–320Google Scholar
  129. 129.
    Tintarev N, Masthoff J (2012) Evaluating the effectiveness of explanations for recommender systems—methodological issues and empirical studies on the impact of personalization. User Model User-Adapt Interact 22(4–5):399–439CrossRefGoogle Scholar
  130. 130.
    Tintarev N, Masthoff J (2011) Designing and evaluating explanations for recommender systems. In: Rokach L, Shapira B, Kantor PB, Ricci F (eds) Recommender systems handbook. Springer, Boston, pp 479–510Google Scholar
  131. 131.
    Turney PD, Pantel P et al (2010) From frequency to meaning: vector space models of semantics. J Artif Intell Res 37(1):141–188MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Vig J, Sen S, Riedl J (2009) Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th international conference on intelligent user interfaces. ACM, pp 47–56Google Scholar
  133. 133.
    Wang Y, Aroyo LM, Stash N, Rutledge L (2007) Interactive user modeling for personalized access to museum collections: the rijksmuseum case study. In: International conference on user modeling. Springer, Berlin, pp 385–389CrossRefGoogle Scholar
  134. 134.
    Wang M, Kawamura T, Sei Y, Nakagawa H, Tahara Y, Ohsuga A (2013) Context-aware music recommendation with serendipity using semantic relations. In: Semantic technology—third joint international conference, JIST 2013, Seoul, South Korea, 28–30 Nov 2013, Revised Selected Papers. Lecture Notes in Computer Science, vol 8388. Springer, pp 17–32Google Scholar
  135. 135.
    Wasserman S (1994) Social network analysis: methods and applications, vol 8. Cambridge University PressGoogle Scholar
  136. 136.
    West DB, et al (2001) Introduction to graph theory, vol 2. Prentice Hall Upper Saddle RiverGoogle Scholar
  137. 137.
    Widdows D (2003) Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In: Hinrichs EW, Roth D (eds) Proceedings of the 41st annual meeting of the association for computational linguistics, pp 136–143Google Scholar
  138. 138.
    Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. ICML 97:412–420Google Scholar
  139. 139.
    Yujian L, Bo L (2007) A normalized levenshtein distance metric. IEEE Trans Pattern Anal Mach Intell 29(6):1091–1095CrossRefGoogle Scholar
  140. 140.
    Zeng D, Chen H, Lusch R, Li SH (2010) Social media analytics and intelligence. IEEE Intell Syst 25(6):13–16CrossRefGoogle Scholar
  141. 141.
    Ziegler CN, Skubacz M (2006) Towards automated reputation and brand monitoring on the web. In: IEEE/WIC/ACM international conference on web intelligence, WI 2006. IEEE, pp 1066–1072Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pasquale Lops
    • 1
    Email author
  • Cataldo Musto
    • 2
  • Fedelucio Narducci
    • 2
  • Giovanni Semeraro
    • 2
  1. 1.Dipartimento di InformaticaUniversità di Bari Aldo MoroBariItaly
  2. 2.Dipartimento di InformaticaUniversità di Bari Aldo MoroBariItaly

Personalised recommendations