Advertisement

Humans Have a Distributed, Molecular Long-Term Memory

  • John L. Pfaltz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

Most memory research has assumed that our long-term memories are somehow retained in our brain, usually by modified synaptic connections. This paper proposes a very different scenario, in which the basic substrate of these memories are molecules which flow within a newly discovered circulatory system similar to our lymph system. Moreover, the information bearing molecules are postulated to be cyclic protein polymers similar to the proteins found in all cell membranes.

Two network algorithms are presented which convert networks to, and from, such cyclic structures and seem to mimic the psychological processes of consolidation, recall, and reconsolidation.

References

  1. 1.
    Afshar, A.A.S.: Systemic modeling of biomolecular interaction networks. Dissertation, Johns Hopkins University, October 2016Google Scholar
  2. 2.
    Alberini, C.M., LeDoux, J.E.: Memory reconsolidation. Curr. Biol. 23(17), R746–R750 (2013)CrossRefGoogle Scholar
  3. 3.
    Almén, M.S., Nordström, K.J.V., Fredriksson, R., Schiöth, H.B.: Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol., 1–14 (2009)Google Scholar
  4. 4.
    Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control processes. In: Spence, K.W., Spence, J.T. (eds.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 2, pp. 89–195 (1968)Google Scholar
  5. 5.
    Baluška, F., Levin, M.: On having no head: cognition throughout biological systems. Front. Psychol. 7(902), 1–19 (2016).  https://doi.org/10.3389/fpsyg.2016.00902CrossRefGoogle Scholar
  6. 6.
    Barker, G.R.I., Banks, P.J., Scott, H., Ralph, G.S., et al.: Separate elements of episodic memory subserved by distinct hippocampal-prefrontal connections. Nature Neurosci., 1–28 (2017).  https://doi.org/10.1038/nn.4472CrossRefGoogle Scholar
  7. 7.
    Benias, P.C., Wells, R.G., Carr-Locke, D.L., Theise, N.D., et al.: Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. 8(4947), 1–8 (2017).  https://doi.org/10.1038/s41598-018-23062-6CrossRefGoogle Scholar
  8. 8.
    Bonin, J.E., Oxley, J.G., Servatius, B. (eds.) Matroid theory. Contemporary Mathematics, #197. Amer. Math. Soc., Providence, RI (1995)Google Scholar
  9. 9.
    Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140 (2011)CrossRefGoogle Scholar
  10. 10.
    Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators and implicational systems on a finite set: a survey. Discret. Appl. Math. 127(2), 241–269 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gagliano, M., Vyazovstiy, V.V., Borbély, A.A., Grimonprez, M., Depczynski, M.: Learning by association in plants. Sci. Rep., 1–9, December 2016.  https://doi.org/10.1038/srep38427
  12. 12.
    Gardiner, J.M.: Retrieval: on its essence and related concepts. In: Roediger III, H.L., Dudai, Y., Fitzpatrick, S.M. (eds.) Science of Memory: Concepts, pp. 221–224 (2007)Google Scholar
  13. 13.
    Glanzman, D.L.: PKM and the maintenance of memory. F1000 Biol. Rep. 5(4), 1–9 (2013)Google Scholar
  14. 14.
    Liscom, E., Askinosie, S.K., Leuchtman, D.L., Morrow, J., Willenburg, K.T., Coats, D.R.: Growing towards an understanding of plant movement: emmanuel liscom. Plant Cell 26, 38–55 (2014)CrossRefGoogle Scholar
  15. 15.
    McConnell, J.V., Jacobson, A.L., Kimble, D.P.: The effects of regeneration upon retention of a conditioned response in the planarian. J. Comp. Physiol. Psychol. 52(1), 1–5 (1959).  https://doi.org/10.1037/h0048028CrossRefGoogle Scholar
  16. 16.
    McKee, T.A.: How chordal graphs work. Bull. ICA 9, 27–39 (1993)Google Scholar
  17. 17.
    Moscovitch, M.: Memory: why the engram is elusive. In: Roediger III, H.L., Dudai, Y., Fitzpatrick, S.M. (eds.) Science of Memory: Concepts, pp. 17–21 (2007)Google Scholar
  18. 18.
    Nadel, L.: Consolidation: the demise of the fixed trace. In: Roediger III, H.L., Dudai, Y., Fitzpatrick, S.M. (eds.) Science of Memory: Concepts, pp. 177–181 (2007)Google Scholar
  19. 19.
    Neuhof, M.: Levin, Michael, Rechavi, Oded: Vertically-and horizontally-transmitted - the fading boundaries between regeneration and inheritance in planaria. Biol. Open 5, 1177–1188 (2016).  https://doi.org/10.1242/bio.020149CrossRefGoogle Scholar
  20. 20.
    Patel, S.S., Belmont, B.J., Sante, J.M., Rexach, M.F.: Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007)CrossRefGoogle Scholar
  21. 21.
    Pfaltz, J.L.: Finding the mule in the network. In: Werner, R.A.B. (ed.) International Conference on Advances in Social Network Analysis and Mining, ASONAM 2012, Istanbul, Turkey, pp. 667–672, August 2012Google Scholar
  22. 22.
    Pfaltz, J.L.: Using closed sets to model cognitive behavior. In: Ray, T., Sarker, R., Li, X. (eds.) ACALCI 2016. LNCS (LNAI), vol. 9592, pp. 13–26. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28270-1_2CrossRefGoogle Scholar
  23. 23.
    Pfaltz, J.L.: Computational processes that appear to model human memory. In: Figueiredo, D., Martín-Vide, C., Pratas, D., Vega-Rodríguez, M.A. (eds.) AlCoB 2017. LNCS, vol. 10252, pp. 85–99. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58163-7_6CrossRefzbMATHGoogle Scholar
  24. 24.
    Pfaltz, J.L.: Graph similarity defined by graph transformation. In: 2nd International Conference on Applied Math and Computational Science, p. 35 (abstract), Budapest, Hungary (2018)Google Scholar
  25. 25.
    Poo, M., Pignatelli, M., Ryan, T.J., Tonegawa, S., et al.: What is memory? The present state of the engram. BioMedCentral Biology, pp. 1–18, 2016.  https://doi.org/10.1186/s12915-016-0261-6
  26. 26.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)CrossRefGoogle Scholar
  27. 27.
    Sacktor, T.C.: Memory maintenance by PKM\(\zeta \) - an evolutionary perspective. Mol. Brain 5(31), September 2012.  https://doi.org/10.1186/1756-6606-5-31CrossRefGoogle Scholar
  28. 28.
    Sarti, A., Citti, G., Petitot, J.: Functional geometry of the horizontal connectivity in the primary visual cortex. J. Physiol. Paris 103(1–2), 37–45 (2009)CrossRefGoogle Scholar
  29. 29.
    Sossin, W.S.: Molecular memory traces. Prog. Brain Res. 169, 3–25 (2008)CrossRefGoogle Scholar
  30. 30.
    Sporns, O., Honey, C.J., Kötter, R.: Identification and classification in brain networks. PLoS ONE 2, e1049 (2007)CrossRefGoogle Scholar
  31. 31.
    Stock, J.B., Zhang, S.: The biochemistry of memory. Curr. Biol. 23(17), R741–R745 (2013)CrossRefGoogle Scholar
  32. 32.
    Turner, P.R., O’Connor, K., Tate, W.P., Abraham, W.C.: Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70, 1–32 (2003)CrossRefGoogle Scholar
  33. 33.
    Weis, K.: The nuclear pore complex: oily spaghetti or gummy bear? Cell 130, 405–407 (2007)CrossRefGoogle Scholar
  34. 34.
    Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)zbMATHGoogle Scholar
  35. 35.
    Zeidman, P., Maguire, E.A.: Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat. Rev. Neurosci. 17, 1–26 (2016).  https://doi.org/10.1038/nm.2015.24CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations