Assessment of Source Connectivity for Emotional States Discrimination

  • J. D. Martinez-Vargas
  • D. A. Nieto-Mora
  • P. A. Muñoz-GutiérrezEmail author
  • Y. R. Cespedes-Villar
  • E. Giraldo
  • G. Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)


In this paper a novel methodology for assessing source connectivity applied to emotional states discrimination is proposed. The method involves (i) designing the set of Regions-of-interest (ROIs) over the cortical surface, (ii) estimating the ROI time-courses using a dynamic inverse problem formulation, (iii) estimating the pairwise functional connectivity between ROIs, and (iv) feeding a Support Vector Machine Classifier with the estimated connectivity to discriminate between emotional states. The performance of the proposed methodology is evaluated over a real database where obtained results improve state-of-the-art methods that either compute connectivity between pairs of EEG channels or do not consider the non-stationary nature of the EEG data.


EEG inverse problem Connectivity Emotional states discrimination Regions of interest 



This work was carried out under the funding of COLCIENCIAS. Research project: 111077757982: “Sistema de identificación de fuentes epileptogénicas basado en medidas de conectividad funcional usando registros electroencefalográficos e imágenes de resonancia magnética en pacientes con epilepsia refractaria: apoyo a la cirugía resectiva”.


  1. 1.
    Koppert, M., Kalitzin, S., Velis, D., da Silva, F.L., Viergever, M.: Dynamics of collective multi-stability in models of distributed neuronal systems. Int. J. Neural Syst. 24(2), 1430004 (2014)CrossRefGoogle Scholar
  2. 2.
    Lei, X., Wu, T., Valdes-Sosa, P.A.: Incorporating priors for EEG source imaging and connectivity analysis. Front. Neurosci. 9, 284 (2015)CrossRefGoogle Scholar
  3. 3.
    Schoffelen, J.M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30(6), 1857–1865 (2009)CrossRefGoogle Scholar
  4. 4.
    Hurtado-Rincón, J.V., Martínez-Vargas, J.D., Rojas-Jaramillo, S., Giraldo, E., Castellanos-Dominguez, G.: Identification of relevant inter-channel EEG connectivity patterns: a kernel-based supervised approach. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 14–23. Springer, Cham (2016). Scholar
  5. 5.
    Gupta, R., Hur, Y.J., Lavie, N.: Distracted by pleasure: effects of positive versus negative valence on emotional capture under load. Emotion 16(3), 328 (2016)CrossRefGoogle Scholar
  6. 6.
    Chella, F., Pizzella, V., Zappasodi, F., Marzetti, L.: Impact of the reference choice on scalp eeg connectivity estimation. J. Neural Eng. 13(3), 036016 (2016)CrossRefGoogle Scholar
  7. 7.
    Lai, M., Demuru, M., Hillebrand, A., Fraschini, M.: A comparison between scalp-and source-reconstructed EEG networks. Sci. Rep. 8(1), 12269 (2018)CrossRefGoogle Scholar
  8. 8.
    Bastos, A.M., Schoffelen, J.M.: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016)CrossRefGoogle Scholar
  9. 9.
    Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18, 14–30 (2001)CrossRefGoogle Scholar
  10. 10.
    Haufe, S., et al.: Large-scale EEG/MEG source localization with spatial flexibility. NeuroImage 54(2), 851–859 (2011)CrossRefGoogle Scholar
  11. 11.
    Castaño-Candamil, S., Höhne, J., Martínez-Vargas, J.D., An, X.W., Castellanos-Domínguez, G., Haufe, S.: Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints. NeuroImage 118, 598–612 (2015)CrossRefGoogle Scholar
  12. 12.
    Martinez-Vargas, J.D., Strobbe, G., Vonck, K., van Mierlo, P., Castellanos-Dominguez, G.: Improved localization of seizure onset zones using spatiotemporal constraints and time-varying source connectivity. Front. Neurosci. 11, 156 (2017)CrossRefGoogle Scholar
  13. 13.
    Chen, X., Lin, Q., Kim, S., Carbonell, J.G., Xing, E.P.: Smoothing proximal gradient method for general structured sparse regression. Ann. Appl. Stat. 6(2), 719–752 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gupta, R., Falk, T.H., et al.: Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization. Neurocomputing 174, 875–884 (2016)CrossRefGoogle Scholar
  15. 15.
    Srinivasan, R., Winter, W.R., Ding, J., Nunez, P.L.: EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J. Neurosci. Methods 166(1), 41–52 (2007)CrossRefGoogle Scholar
  16. 16.
    Koelstra, S., et al.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)CrossRefGoogle Scholar
  17. 17.
    Haufe, S., Ewald, A.: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr., 1–18 (2016)., ISSN 1573-6792
  18. 18.
    Huang, Y., Parra, L.C., et al.: The new york head- a precise standardized volume conductor model for EEG source localization and TES targeting. NeuroImage 140, 150–162 (2016)CrossRefGoogle Scholar
  19. 19.
    Friston, K., et al.: Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39(3), 1104–1120 (2008)CrossRefGoogle Scholar
  20. 20.
    Padilla-Buritica, J.I., Martinez-Vargas, J.D., Castellanos-Dominguez, G.: Emotion discrimination using spatially compact regions of interest extracted from imaging EEG activity. Front. Comput. Neurosci. 10, 55 (2016)CrossRefGoogle Scholar
  21. 21.
    Hata, M., et al.: Functional connectivity assessed by resting state eeg correlates with cognitive decline of alzheimer’s disease-an eloreta study. Clin. Neurophysiol. 127(2), 1269–1278 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • J. D. Martinez-Vargas
    • 1
  • D. A. Nieto-Mora
    • 1
  • P. A. Muñoz-Gutiérrez
    • 2
    Email author
  • Y. R. Cespedes-Villar
    • 3
  • E. Giraldo
    • 4
  • G. Castellanos-Dominguez
    • 5
  1. 1.Instituto Tecnológico MetropolitanoMedellínColombia
  2. 2.Universidad del QuindíoArmeniaColombia
  3. 3.Centro de Bioinformatica y Biologia Computacional de Colombia - BIOSManizalesColombia
  4. 4.Universidad Tecnológica de PereiraPereiraColombia
  5. 5.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaSede ManizalesColombia

Personalised recommendations