Influence of Realistic Head Modeling on EEG Forward Problem

  • Ernesto Cuartas MoralesEmail author
  • Yohan Ricardo Céspedes Villar
  • Héctor Fabio Torres Cardona
  • Carlos Daniel Acosta
  • German Castellanos Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)


We study the influence of realistic head modeling on the EEG forward problem. To this end, we define a high-resolution patient-specific realistic head model from 3T-MRI and DWI data. Further, we performed a nine tissues segmentation and a white matter anisotropy estimation. Then we solve the forward problem using a state-of-the-art FDM solution that allows volumetric voxelwise anisotropic definition in a reciprocity sensors space. Finally, we compared the 9-tissues realistic head model against the commonly used 5-tissues isotropic representation. Our results show significant potential deviations due to the white matter anisotropy, and radio to tangential patterns in the outer skull regions as a direct effect of essential tissues like fat or muscle. Moreover, we analyze the dipole estimation errors in a parametric inverse setup, finding DLE’s larger than 20 mm. Additionally, we study the influence of neglecting the blood vessels, finding DLE’s larger than 4 mm in deep brain areas.


Forward modeling Conductivity anisotropy Finite differences 


  1. 1.
    Cuartas-Morales, E., Daniel-Acosta, C., Castellanos-Dominguez, G.: iLU preconditioning of the anisotropic-finite-difference based solution for the EEG forward problem. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 408–418. Springer, Cham (2015). Scholar
  2. 2.
    Gabriel, C.: Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Environmental Health (1993)Google Scholar
  3. 3.
    Hallez, H., Staelens, S., Lemahieu, I.: Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis. Phys. Med. Biol. 54(20), 6079 (2009)CrossRefGoogle Scholar
  4. 4.
    Irimia, A., et al.: Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment. Clin. Neurol. Neurosurg. 115(10), 2159–2165 (2013)CrossRefGoogle Scholar
  5. 5.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012). Scholar
  6. 6.
    Montes, V., van Mierlo, P., Strobbe, G., Staelens, S., Vandenberghe, S., Hallez, H.: Influence of skull modeling approaches on EEG source localization. Brain Topogr. 27(1), 95–111 (2013)CrossRefGoogle Scholar
  7. 7.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). Scholar
  8. 8.
    Rahmouni, L., Mitharwal, R., Andriulli, F.P.: Two volume integral equations for the inhomogeneous and anisotropic forward problem in electroencephalography. J. Comput. Phys. 348, 732–743 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Stenroos, M., Sarvas, J., et al.: Bioelectromagnetic forward problem: isolated source approach revis(it)ed. Phys. Med. Biol. 57(11), 3517 (2012)CrossRefGoogle Scholar
  10. 10.
    Torrado, C.A.H.T.J., et al.: High-Field MRI Planning Patient-Specific Tissue Model Segmentation in MRI. In: ISMRM 2014 (2014)Google Scholar
  11. 11.
    Vorwerk, J., Cho, J.H., Rampp, S., Hamer, H., Knösche, T.R., Wolters, C.H.: A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100, 590–607 (2014)CrossRefGoogle Scholar
  12. 12.
    Wolters, C.H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M.A., Macleod, R.S.: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3), 813–826 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ernesto Cuartas Morales
    • 1
    Email author
  • Yohan Ricardo Céspedes Villar
    • 2
  • Héctor Fabio Torres Cardona
    • 3
  • Carlos Daniel Acosta
    • 1
  • German Castellanos Dominguez
    • 1
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, ColombiaManizalesColombia
  2. 2.Centro de Bioinformática y Biología Computacional de Colombia - BIOSBogotaColombia
  3. 3.Universidad de CaldasManizalesColombia

Personalised recommendations