Evaluating Mental Health Encounters in mTBI: Identifying Patient Subgroups and Recommending Personalized Treatments

  • Filip DabekEmail author
  • Peter HooverEmail author
  • Jesus CabanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)


Mild Traumatic Brain Injuries (mTBIs) are “poorly understood” [6] and often associated with psychiatric conditions [21]. While machine learning techniques have explored these comorbidities, the utilization of psychiatric Electronic Health Records (EHRs) poses unique challenges, but provides great promise in the understanding of the brain and the effect of an mTBI [3, 14]. Therefore, in an effort to assist clinical practice in the field of mTBI, we present our work on utilizing EHR in which we apply machine learning models to identify and compare patient subgroups and explore algorithms to recommend patient catered treatment plans. Through this work, we aim to highlight effective techniques for handling the complexities of EHR and psychiatric-specific data.


Traumatic brain injury Machine learning Mental health Psychiatry Healthcare application 


  1. 1.
    Almeida, H., Guedes, D., Meira, W., Zaki, M.J.: Is there a best quality metric for graph clusters? In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 44–59. Springer, Heidelberg (2011). Scholar
  2. 2.
    Bailie, J.M., et al.: Profile analysis of the neurobehavioral and psychiatric symptoms following combat-related mild traumatic brain injury: identification of subtypes. J. Head Trauma Rehabil. 31(1), 2–12 (2016)CrossRefGoogle Scholar
  3. 3.
    Blavin, F.E., Buntin, M.B.: Forecasting the use of electronic health records: an expert opinion approach. Medicare MedicaidRes. Rev.3(2) (2013)CrossRefGoogle Scholar
  4. 4.
    Chekroud, A.M., Gueorguieva, R., Krumholz, H.M., Trivedi, M.H., Krystal, J.H., McCarthy, G.: Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach. JAMA Psychiatry 74(4), 370–378 (2017)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system, pp. 785–794. ACM (2016)Google Scholar
  6. 6.
    Cifu, D.X., Caruso, D.: Traumatic Brain Injury. Demos Medical Publishing, New York (2010)Google Scholar
  7. 7.
    Conder, R.L., Conder, A.A.: Sports-related concussions. North Carolina Med. J. 76(2), 89–95 (2015)CrossRefGoogle Scholar
  8. 8.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefGoogle Scholar
  9. 9.
    Hug, N.: Surprise, a Python library for recommender systems (2017).
  10. 10.
    Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  11. 11.
    Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)Google Scholar
  12. 12.
    Lletı, R., Ortiz, M.C., Sarabia, L.A., Sánchez, M.S.: Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal. Chim. Acta 515(1), 87–100 (2004)CrossRefGoogle Scholar
  13. 13.
    Meystre, S.M., Savova, G.K., Kipper-Schuler, K.C., Hurdle, J.F., et al.: Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 35(128), 44 (2008)Google Scholar
  14. 14.
    Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)CrossRefGoogle Scholar
  15. 15.
    Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization, pp. 195–204. ACM (2000)Google Scholar
  16. 16.
    Newcomer, S.R., Steiner, J.F., Bayliss, E.A.: Identifying subgroups of complex patients with cluster analysis. Am. J. Managed Care 17(8), e324-32 (2011)Google Scholar
  17. 17.
    Ngoc, P.T., Yoo, M.: The lexicon-based sentiment analysis for fan page ranking in facebook. In: 2014 International Conference on Information Networking (ICOIN), pp. 444–448. IEEE (2014)Google Scholar
  18. 18.
    Nielsen, F.Å.: Afinn, March 2011.
  19. 19.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). Scholar
  20. 20.
    Pelleg, D., Moore, A.W., et al.: X-means: extending k-means with efficient estimation of the number of clusters. ICML 1, 727–734 (2000)Google Scholar
  21. 21.
    Schwarzbold, M., et al.: Psychiatric disorders and traumatic brain injury. Neuropsychiatric Dis. Treat. 4(4), 797 (2008)Google Scholar
  22. 22.
    Silge, J., Robinson, D.: Text Mining with R: A Tidy Approach. O’Reilly Media Inc., Sebastopol (2017)Google Scholar
  23. 23.
    Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)CrossRefGoogle Scholar
  24. 24.
    Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Weiskopf, N.G., Hripcsak, G., Swaminathan, S., Weng, C.: Defining and measuring completeness of electronic health records for secondary use. J. Biomed. Inf. 46(5), 830–836 (2013)CrossRefGoogle Scholar
  26. 26.
    Wilk, J.E., Herrell, R.K., Wynn, G.H., Riviere, L.A., Hoge, C.W.: Mild traumatic brain injury (concussion), posttraumatic stress disorder, and depression in us soldiers involved in combat deployments: association with postdeployment symptoms. Psychosom. Med. 74(3), 249–257 (2012)CrossRefGoogle Scholar
  27. 27.
    Wu, J., Roy, J., Stewart, W.F.: Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med. Care 48(6), S106–S113 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaUSA

Personalised recommendations