Simultaneous EEG Analysis and Feature Extraction Selection Based on Unsupervised Learning

  • Badar AlmarriEmail author
  • Chun-Hsi Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)


Time-series EEG signals in a raw form are challenging to analyze, train, and compute. Several feature extraction methods, such as fast Fourier transform, wavelet transform, and time-frequency distributions, are commonly employed for this purpose. However, when applied to different datasets, the alignment between the method and machine learning algorithms varies significantly. Through an EEG experiment, we test a simultaneous analysis and unsupervised learning application that can effectively determine what feature extraction method will potentially lead to a higher prediction precision when the ground truth is provided by the participants at a later stage.


EEG Feature extraction Clustering Real time analysis 


  1. 1.
    Abootalebi, V., Moradi, M.H., Khalilzadeh, M.A.: A new approach for EEG feature extraction in P300-based lie detection. Comput. Methods Programs Biomed. 94(1), 48–57 (2009)CrossRefGoogle Scholar
  2. 2.
    Amin, H.U., et al.: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas. Phys. Eng. Sci. Med. 38(1), 139–149 (2015)CrossRefGoogle Scholar
  3. 3.
    Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete algorithms, pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)Google Scholar
  4. 4.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Frantzidis, C.A., et al.: Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. IEEE Trans. Inf. Technol. Biomed. 14(3), 589–597 (2010)CrossRefGoogle Scholar
  6. 6.
    Hong, K.S., Khan, M.J., Hong, M.J.: Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front. Hum. Neurosci. 12 (2018)Google Scholar
  7. 7.
    Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE T. Affect. Comput. 5(3), 327–339 (2014)CrossRefGoogle Scholar
  8. 8.
    Kevric, J., Subasi, A.: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 31, 398–406 (2017)CrossRefGoogle Scholar
  9. 9.
    Koelstra, S., et al.: Deap: a database for emotion analysis; using physiological signals. IEEE T. Affect. Comput. 3(1), 18–31 (2012)CrossRefGoogle Scholar
  10. 10.
    Lan, Z., Sourina, O., Wang, L., Liu, Y.: Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 32(3), 347–358 (2016)CrossRefGoogle Scholar
  11. 11.
    Liu, C., Abu-Jamous, B., Brattico, E., Nandi, A.: Clustering consistency in neuroimaging data analysis. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1118–1122. IEEE (2015)Google Scholar
  12. 12.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)CrossRefGoogle Scholar
  13. 13.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recognit. 33(9), 1455–1465 (2000)CrossRefGoogle Scholar
  14. 14.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)Google Scholar
  15. 15.
    O’Toole, J.M., Temko, A., Stevenson, N.: Assessing instantaneous energy in the EEG: a non-negative, frequency-weighted energy operator. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3288–3291. IEEE (2014)Google Scholar
  16. 16.
    Patkar, V.P., Das, L., Joshi, P.: Evaluation of PSE, STFT and probability coefficients for classifying two directions from EEG using radial basis function. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–4. IEEE (2015)Google Scholar
  17. 17.
    Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage 155, 530–548 (2017)CrossRefGoogle Scholar
  18. 18.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  19. 19.
    Vakman, D.: On the analytic signal, the Teager-Kaiser Energy algorithm, and other methods for defining amplitude and frequency. IEEE Trans. Signal Process. 44(4), 791–797 (1996)CrossRefGoogle Scholar
  20. 20.
    Wu, K., Zhang, D., Lu, G.: GMAT: Glottal closure instants detection based on the multiresolution absolute Teager-Kaiser energy operator. Digit. Signal Process. 69, 286–299 (2017)CrossRefGoogle Scholar
  21. 21.
    Xi, X., Tang, M., Miran, S.M., Luo, Z.: Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 17(6), 1229 (2017)CrossRefGoogle Scholar
  22. 22.
    Yap, H.-Y., Choo, Y.-H., Khoh, W.-H.: Overview of acquisition protocol in EEG based recognition system. In: Zeng, Y., He, Y., Kotaleski, J.H., Martone, M., Xu, B., Peng, H., Luo, Q. (eds.) BI 2017. LNCS (LNAI), vol. 10654, pp. 129–138. Springer, Cham (2017). Scholar
  23. 23.
    Zhong, M., Lotte, F., Girolami, M., Lécuyer, A.: Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recogn. Lett. 29(3), 354–359 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of ConnecticutStorrsUSA
  2. 2.King Faisal UniversityAl HofufSaudi Arabia

Personalised recommendations