Advertisement

Influence of Time-Series Extraction on Binge Drinking Interpretability Using Functional Connectivity Analysis

  • J. I. Padilla-Buriticá
  • H. F. Torres
  • E. Pereda
  • A. Correa
  • G. Castellanos-Domínguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

Brain connectivity analysis has gained considerable importance in different cognitive tasks and the detection of pathological conditions. Despite recent advances in connectivity analysis, there are still problems to be solved, being a proper extraction of the time-series to characterize the regions of interest (ROI) one of the challenges. In this work, we examine the influence of the time-varying mean estimation on the brain connectivity analysis for control and binge drinkers subjects. The obtained results show that the performance of brain connectivity improves using the eigenvalue-based averaging since it may face better the nonstationarity behavior and inter-trial variability of MEG activity.

Keywords

Connectivity analysis MEG inverse problem Lagged phase synchronization 

Notes

Acknowledgements

This research is supported by the research project 36706: BrainScore: “Sistema compositivo, gráfico y sonoro creado a partir del comportamiento frecuencial de las señales cerebrales”, funded by Universidad de Caldas and Universidad Nacional de Colombia, JIPB is financed by Programa Nacional de Becas de Doctorado, convocatoria 647(2014).

References

  1. 1.
    Bastos, A.M., Schoffelen, J.M.: A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016)CrossRefGoogle Scholar
  2. 2.
    Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U., Preissl, H.: Source reconstruction accuracy of MEG and EEG Bayesian inversion approaches. PloS one 7(12), 51985 (2012)CrossRefGoogle Scholar
  3. 3.
    Carbia, C., Cadaveira, F., Lopez-Caneda, E., Caamaño-Isorna, F., Holguín, S.R., Corral, M.: Working memory over a six-year period in young binge drinkers. Alcohol 61, 17–23 (2017)CrossRefGoogle Scholar
  4. 4.
    Cho, J.H., Vorwerk, J., Wolters, C.H., Knösche, T.R.: Influence of the head model on EEG and MEG source connectivity analyses. Neuroimage 110, 60–77 (2015)CrossRefGoogle Scholar
  5. 5.
    Correas, A., et al.: Functional and structural brain connectivity of young binge drinkers: a follow-up study. Sci. Rep. 6 (2016)Google Scholar
  6. 6.
    Gajdoš, M., Mračková, M., Elfmarková, N., Rektorová, I., Mikl, M.: 50. Comparison of canonical correlation analysis and pearson correlation in resting state fMRI in patients with parkinson’s disease. Clin. Neurophysiol. 126(3), 47–48 (2015)CrossRefGoogle Scholar
  7. 7.
    Hata, M., et al.: Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer’s disease-An eLORETA study. Clin. Neurophysiol. 127(2), 1269–1278 (2016)CrossRefGoogle Scholar
  8. 8.
    Henson, R.N., Flandin, G., Friston, K.J., Mattout, J.: A parametric pmpirical bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum. Brain Mapp. 31(10), 1512–1531 (2010)CrossRefGoogle Scholar
  9. 9.
    Mahjoory, K., Nikulin, V.V., Botrel, L., Linkenkaer-Hansen, K., Fato, M.M., Haufe, S.: Consistency of eeg source localization and connectivity estimates. Neuroimage 152, 590–601 (2017)CrossRefGoogle Scholar
  10. 10.
    Martinez-Vargas, J.D., Strobbe, G., Vonck, K., van Mierlo, P., Castellanos-Dominguez, G.: Improved localization of seizure onset zones using spatiotemporal constraints and time-varying source connectivity. Front. Neurosci. 11, 156 (2017)CrossRefGoogle Scholar
  11. 11.
    Padilla-Buritica, J.I., Martinez-Vargas, J.D., Castellanos-Dominguez, G.: Emotion discrimination using spatially compact regions of interest extracted from imaging EEG activity. Front. Comput. Neurosci. 10, 55 (2016)CrossRefGoogle Scholar
  12. 12.
    Spear, L.P.: Effects of adolescent alcohol consumption on the brain and behaviour. Nat. Rev. Neurosci. 19(4), 197–214 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • J. I. Padilla-Buriticá
    • 1
    • 3
  • H. F. Torres
    • 2
  • E. Pereda
    • 4
  • A. Correa
    • 4
  • G. Castellanos-Domínguez
    • 1
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Universidad de CaldasManizalesColombia
  3. 3.Diseño Electrónico y Técnicas de Tratamiento de SeñalUniversidad Politécnica de CartagenaCartagenaSpain
  4. 4.Universidad de la LagunaSanta Cruz de TenerifeSpain

Personalised recommendations