Advertisement

Use of Temporal Attributes in Detection of Functional Areas in Basal Ganglia

  • Konrad A. Ciecierski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

Basal ganglia are a target for deep brain stimulation (DBS) in various neurological disorders like Parkinson’s Disease (PD) or Dystonia. Due to the complex excitatory and inhibitory interactions between various components of basal ganglia, it is often as much important to stimulate certain regions as it is not to stimulate others. Such is the case in DBS surgery for PD where the goal is the stimulation of the Subthalamic Nucleus (STN) while the Substantia Nigra Pars reticulata (SNr) should not be stimulated. In this paper it is shown that use of temporal attributes extracted from microrecordings acquired during DBS procedure not only allows for better detection of the STN itself but also helps to prevent false positive identification of the SNr recordings as the STN ones.

Keywords

DBS (Deep Brain Stimulation) STN (Subthalamic Nucleus) SNr (Substantia Nigra Pars reticulata) Teamporal fatures Classification Random Forest SVM Decision support system 

References

  1. 1.
    Israel, Z., Burchiel, K.J.: Microelectrode Recording in Movement Disorder Surgery. Thieme, New York (2011)Google Scholar
  2. 2.
    Nieuwenhuys, R., Voogd, J., Van Huijzen, C.: The Human Central Nervous System: A Synopsis and Atlas. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-34686-9CrossRefGoogle Scholar
  3. 3.
    Pizzolato, G., Mandat, T.: Deep brain stimulation for movement disorders. Front. Integr. Neurosci. 6, 2 (2012)CrossRefGoogle Scholar
  4. 4.
    Anderson, P.B., Rogers, M.H.: Deep Brain Stimulation: Applications, Complications and Side Effects. Nova Biomedical Books, New York (2009)Google Scholar
  5. 5.
    Temel, Y., Blokland, A., Steinbusch, H.W.M., Visser-Vandewalle, V.: The functional role of the subthalamic nucleus in cognitive and limbic circuits. Progress Neurobiol. 76(6), 393–413 (2005)CrossRefGoogle Scholar
  6. 6.
    Priori, A., Egidi, M., Pesenti, A., Rohr, M., et al.: Do intraoperative microrecordings improve subthalamic nucleus targeting in stereotactic neurosurgery for Parkinson’s disease? J. Neurosurg. Sci. 47(1), 56 (2003)Google Scholar
  7. 7.
    Ciecierski, K., Raś, Z.W., Przybyszewski, A.W.: Foundations of recommender system for STN localization during DBS surgery in Parkinson’s patients. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS (LNAI), vol. 7661, pp. 234–243. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34624-8_28CrossRefGoogle Scholar
  8. 8.
    Ciecierski, K.A.: Methods of automatic artifact removal in neurobiological signals. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) AUTOMATION 2018. AISC, vol. 743, pp. 72–81. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77179-3_7CrossRefGoogle Scholar
  9. 9.
    Agid, Y.: Parkinson’s disease: pathophysiology. Lancet 337(8753), 1321–1324 (1991). https://www.thelancet.com/journals/lancet/article/PII0140-6736(91)92989-F/fulltextCrossRefGoogle Scholar
  10. 10.
    Ciecierski, K.A., Raś, Z.W., Przybyszewski, A.W.: Frequency based mapping of the STN borders. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W., Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 386–395. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25252-0_42CrossRefGoogle Scholar
  11. 11.
    Ciecierski, K.A., Raś, Z.W., Przybyszewski, A.W., Ciecierski, K.: Review of classification methods for intraoperative decision making for STN DBS in Parkinson diseaseGoogle Scholar
  12. 12.
    Qi, Y.: Random forest for bioinformatics. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning, pp. 307–323. Springer, Boston (2012).  https://doi.org/10.1007/978-1-4419-9326-7_11CrossRefGoogle Scholar
  13. 13.
    Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40(12), 3358–3378 (2007)CrossRefGoogle Scholar
  14. 14.
    Hajian-Tilaki, K.: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Internal Med. 4(2), 627 (2013)Google Scholar
  15. 15.
    Swets, J.A.: Measuring the accuracy of diagnostic systems. Science (1988). http://science.sciencemag.org/content/240/4857/1285.short
  16. 16.
    Statnikov, A., Wang, L., Aliferis, C.F.: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinform. 9(1), 319 (2008). http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-319CrossRefGoogle Scholar
  17. 17.
    Lior, R., et al.: Data Mining with Decision Trees: Theory and Applications, vol. 81. World Scientific (2014)Google Scholar
  18. 18.
    Williams, C.K.I.: Learning with kernels: support vector machines, regularization, optimization, and beyond. J. Am. Stat. Assoc. 98(462), 489 (2003). https://dl.acm.org/citation.cfm?id=559923Google Scholar
  19. 19.
    Ciecierski, K.A., Mandat, T.: Detection of SNr recordings basing upon spike shape classes and signal’s background. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 336–345. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47103-7_33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Research and Academic Computer NetworkWarsawPoland

Personalised recommendations