Advertisement

The Astrocytic Microdomain as a Generative Mechanism for Local Plasticity

  • Ioannis Polykretis
  • Vladimir Ivanov
  • Konstantinos P. Michmizos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

Mounting experimental evidence suggests that astrocytes have an active role in synaptic modification. A central premise is that they modify the structure and the function of the neuronal network but the underlying mechanisms for doing so remain elusive. Here, we developed a biophysically constrained 2D compartmental model of an astrocytic microdomain that suggests an explanation for the recently reported functional clustering of synapses. Our model followed the typical geometrical structure of astrocytes, comprising of functionally independent microdomains, and the spatial allocation of their sub-cellular organelles giving rise to (a) fast, process-specific and (b) delayed, microdomain-wide calcium waves. These waves encoded the neuronal activity into their spatial extent and interacted with each other to impose locally restricted synaptic weight modifications constrained in the microdomain. Our results give a possible explanation for the recently reported spatially clustered functional groups in dendritic spines, advocating the astrocytic microdomain as a fundamental learning unit in the brain.

Keywords

Astrocytes Microdomain Long term potentiation Spatial clustering Learning 

References

  1. 1.
    Gordon, G.R., Iremonger, K.J., Kantevari, S., Ellis-Davies, G.C., MacVicar, B.A., Bains, J.S.: Neuron 64(3), 391–403 (2009)CrossRefGoogle Scholar
  2. 2.
    Henneberger, C., Papouin, T., Oliet, S.H., Rusakov, D.A.: Nature 463(7278), 232 (2010)CrossRefGoogle Scholar
  3. 3.
    Perea, G., Araque, A.: Science 317(5841), 1083–1086 (2007)CrossRefGoogle Scholar
  4. 4.
    Harvey, C.D., Svoboda, K.: Nature 450(7173), 1195 (2007)CrossRefGoogle Scholar
  5. 5.
    Rusakov, D.A.: Nat. Rev. Neurosci. 16(4), 226–33 (2015)CrossRefGoogle Scholar
  6. 6.
    Yang, Y., et al.: Proc. Natl. Acad. Sci. 100(25), 15194–15199 (2003)CrossRefGoogle Scholar
  7. 7.
    Letellier, M., et al.: PNAS 113(19), E2685–E2694 (2016)CrossRefGoogle Scholar
  8. 8.
    Serrano, A., Haddjeri, N., Lacaille, J.-C., Robitaille, R.: J. Neurosci. 26(20), 5370–5382 (2006)CrossRefGoogle Scholar
  9. 9.
    Adamsky, A., et al.: Cell (2018)Google Scholar
  10. 10.
    Tewari, S., Majumdar, K.: J. Comput. Neurosci. 33(2), 341–370 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lisman, J., Yasuda, R., Raghavachari, S.: Nat. Rev. Neurosci. 13(3), 169 (2012)CrossRefGoogle Scholar
  12. 12.
    Scholl, B., Wilson, D.E., Fitzpatrick, D.: Neuron 96(5), 1127–1138 (2017)CrossRefGoogle Scholar
  13. 13.
    Larkum, M.E., Nevian, T.: Curr. Opin. Neurobiol. 18(3), 321–331 (2008)CrossRefGoogle Scholar
  14. 14.
    Winnubst, J., Lohmann, C.: Front. Mol. Neurosci. 5, 70 (2012)CrossRefGoogle Scholar
  15. 15.
    Govindarajan, A., Kelleher, R.J., Tonegawa, S.: Nat. Rev. Neurosci. 7(7), 575 (2006)CrossRefGoogle Scholar
  16. 16.
    Poirazi, P., Mel, B.W.: Neuron 29(3), 779–796 (2001)CrossRefGoogle Scholar
  17. 17.
    Di Castro, M.A., et al.: Nat. Neurosci. 14(10), 1276–1284 (2011)CrossRefGoogle Scholar
  18. 18.
    Grosche, J., Kettenmann, H., Reichenbach, A.: J. Neurosci. Res. 68(2), 138–149 (2002)CrossRefGoogle Scholar
  19. 19.
    Grosche, J., Matyash, V., Moller, T., Verkhratsky, A., Reichenbach, A., Kettenmann, H.: Nat. Neurosci. 2(2), 139–43 (1999)CrossRefGoogle Scholar
  20. 20.
    Araque, A., Martın, E.D., Perea, G., Arellano, J.I., Buño, W.: J. Neurosci. 22(7), 2443–2450 (2002)CrossRefGoogle Scholar
  21. 21.
    Perea, G., Araque, A.: J. Neurosci. 25(9), 2192–2203 (2005)CrossRefGoogle Scholar
  22. 22.
    Bindocci, E., Savtchouk, I., Liaudet, N., Becker, D., Carriero, G., Volterra, A.: Science 356(6339), eaai8185 (2017)CrossRefGoogle Scholar
  23. 23.
    Parpura, V., Haydon, P.G.: PNAS 97(15), 8629–8634 (2000)CrossRefGoogle Scholar
  24. 24.
    Polykretis, I., Ivanov, V., Michmizos, K.P.: International Conference on Neuromorphic Systems, ICONS 2018, 23–26 July 2018, Knoxville (2018)Google Scholar
  25. 25.
    Barres, B.A., Chun, L.L., Corey, D.P.: Glia 1(1), 10–30 (1988)CrossRefGoogle Scholar
  26. 26.
    Latour, I., Hamid, J., Beedle, A.M., Zamponi, G.W., Macvicar, B.A.: Glia 41(4), 347–353 (2003)CrossRefGoogle Scholar
  27. 27.
    Orkand, R., Nicholls, J., Kuffler, S.: J. Neurophys. 29(4), 788–806 (1966)CrossRefGoogle Scholar
  28. 28.
    Meeks, J.P., Mennerick, S.: Hippocampus 17(11), 1100–1108 (2007)CrossRefGoogle Scholar
  29. 29.
    De Pittà, M., Goldberg, M., Volman, V., Berry, H., Ben-Jacob, E.: J. Biol. Phys. 35(4), 383–411 (2009)CrossRefGoogle Scholar
  30. 30.
    Yan, E., Li, B., Gu, L., Hertz, L., Peng, L.: Cell Calcium 54(5), 335–342 (2013)CrossRefGoogle Scholar
  31. 31.
    Zeng, S., Li, B., Zeng, S., Chen, S.: Biophys. J. 97(9), 2429–2437 (2009)CrossRefGoogle Scholar
  32. 32.
    Sibille, J., Duc, K.D., Holcman, D., Rouach, N.: PLoS Comput. Biol. 11(3), e1004137 (2015)CrossRefGoogle Scholar
  33. 33.
    Nadkarni, S., Jung, P.: Phys. Biol. 1(1), 35 (2004)CrossRefGoogle Scholar
  34. 34.
    Kozachkov, L., Michmizos, K.P.: arXiv preprint arXiv:1702.03993 (2017)
  35. 35.
    Halassa, M.M., Fellin, T., Takano, H., Dong, J.-H., Haydon, P.G.: J. Neurosci. 27(24), 6473–6477 (2007)CrossRefGoogle Scholar
  36. 36.
    Petralia, R.S.: Sci. World J. 2012, 10 (2012)CrossRefGoogle Scholar
  37. 37.
    Harris, K.M., Jensen, F.E., Tsao, B.: J. Neurosci. 12(7), 2685–2705 (1992)CrossRefGoogle Scholar
  38. 38.
    Medvedev, N., Popov, V., Henneberger, C., Kraev, I., Rusakov, D.A., Stewart, M.G.: Philos. Trans. R. Soc. B 369(1654), 20140047 (2014)CrossRefGoogle Scholar
  39. 39.
    Papouin, T., Oliet, S.H.: Philos. Trans. R. Soc. B 369(1654), 20130601 (2014)CrossRefGoogle Scholar
  40. 40.
    Sabatini, B.L., Oertner, T.G., Svoboda, K.: Neuron 33(3), 439–452 (2002)CrossRefGoogle Scholar
  41. 41.
    Bear, M.F., Cooper, L.N., Ebner, F.F.: Science 237(4810), 42–48 (1987)CrossRefGoogle Scholar
  42. 42.
    Cormier, R., Greenwood, A., Connor, J.: J. Neurophy. 85(1), 399–406 (2001)CrossRefGoogle Scholar
  43. 43.
    Yang, S.-N., Tang, Y.-G., Zucker, R.S.: J. Neurophy. 81(2), 781–787 (1999)CrossRefGoogle Scholar
  44. 44.
    Abarbanel, H.D., Gibb, L., Huerta, R., Rabinovich, M.I.: Biol. Cybern. 89(3), 214–226 (2003)CrossRefGoogle Scholar
  45. 45.
    Polsky, A., Mel, B.W., Schiller, J.: Nat. Neurosci. 7(6), 621 (2004)CrossRefGoogle Scholar
  46. 46.
    Losonczy, A., Makara, J.K., Magee, J.C.: Nature 452(7186), 436 (2008)CrossRefGoogle Scholar
  47. 47.
    Kanemaru, K., et al.: Cell Rep. 8(1), 311–318 (2014)CrossRefGoogle Scholar
  48. 48.
    Rungta, R.L., et al.: Glia 64(12), 2093–2103 (2016)CrossRefGoogle Scholar
  49. 49.
    Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., Carmignoto, G.: Neuron 43(5), 729–43 (2004)CrossRefGoogle Scholar
  50. 50.
    Reyes, R.C., Parpura, V.: Neurochem. Int. 55(1–3), 2–8 (2009)CrossRefGoogle Scholar
  51. 51.
    Tsodyks, M.V., Markram, H.: Proc. Natl. Acad. Sci. U. S. A. 94(2), 719–23 (1997)CrossRefGoogle Scholar
  52. 52.
    Kozachkov, L., Michmizos, K.P.: arXiv preprint arXiv:1707.05649 (2017)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ioannis Polykretis
    • 1
  • Vladimir Ivanov
    • 1
  • Konstantinos P. Michmizos
    • 1
  1. 1.Computational Brain LabRutgers UniversityNew BrunswickUSA

Personalised recommendations