Advertisement

Functional Connectivity Analysis Using the Oddball Auditory Paradigm for Attention Tasks

  • Juana Valeria Hurtado-Rincón
  • Francia Restrepo
  • Jorge Ivan Padilla
  • Hector Fabio Torres
  • German Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11309)

Abstract

Nowadays, cognitive stimulus processing using Electroencephalographic (EEG) recordings is accomplished by analyzing individually the time-frequency information belonging to each EEG channel. Nevertheless, several studies have characterized cognitive functions as synchronized brain networks depending on the underlying neural interactions. As a result, connectivity analysis provides essential information for improving both the interpretation and interpretability of brain functionality under specific tasks. In this research, we perform functional connectivity analysis by measuring the stability of the phase difference between EEG channels, aiming to include synchronization patterns for studying the brain reaction to cognitive stimulus. Experiments are carried out in subjects responding to an oddball paradigm. Results show statistical differences between target and non-target labels, making the proposed methodology a suitable alternative to support cognitive neurophysiological applications.

Keywords

Brain connectivity Phase synchronization Electroencephalography Oddball paradigm 

Notes

Acknowledgements

This research is supported by the research project # 36706: “BrainScore: Sistema compositivo, gráfico y sonoro creado a partir del comportamiento frecuencial de las senãles cerebrales”, funded by Universidad de Caldas and Universidad Nacional de Colombia.

References

  1. 1.
    Bob, P., Palus, M., Susta, M., Glaslova, K.: EEG phase synchronization in patients with paranoid schizophrenia. Neurosci. Lett. 447(1), 73–77 (2008)CrossRefGoogle Scholar
  2. 2.
    Brázdil, M., Mikl, M., Mareček, R., Krupa, P., Rektor, I.: Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task. Neuroimage 35(2), 827–835 (2007)CrossRefGoogle Scholar
  3. 3.
    Doesburg, S.M., Emberson, L.L., Rahi, A., Cameron, D., Ward, L.M.: Asynchrony from synchrony: long-range gamma-band neural synchrony accompanies perception of audiovisual speech asynchrony. Exp. Brain Res. 185(1), 11–20 (2008)CrossRefGoogle Scholar
  4. 4.
    Fornito, A., Zalesky, A., Bullmore, E.: Fundamentals of Brain Network Analysis. Academic Press, Cambridge (2016)Google Scholar
  5. 5.
    Handy, T.C.: Brain Signal Analysis: Advances in Neuroelectric and Neuromagnetic Methods. MIT Press, Cambridge (2009)CrossRefGoogle Scholar
  6. 6.
    Harper, J., Malone, S.M., Iacono, W.G.: Theta-and delta-band EEG network dynamics during a novelty oddball task. Psychophysiology 54(11), 1590–1605 (2017)CrossRefGoogle Scholar
  7. 7.
    van den Heuvel, M.P., de Lange, S.C., Zalesky, A., Seguin, C., Yeo, B.T., Schmidt, R.: Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. Neuroimage 152, 437–449 (2017)CrossRefGoogle Scholar
  8. 8.
    Hurtado-Rincón, J.V., Martínez-Vargas, J.D., Rojas-Jaramillo, S., Giraldo, E., Castellanos-Dominguez, G.: Identification of relevant inter-channel EEG connectivity patterns: a kernel-based supervised approach. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 14–23. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47103-7_2CrossRefGoogle Scholar
  9. 9.
    Ingber, L., Nunez, P.L.: Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs. Math. Biosci. 229(2), 160–173 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Inouye, T., Shinosaki, K., Iyama, A., Matsumoto, Y., Toi, S.: Moving potential field of frontal midline theta activity during a mental task. Cogn. Brain Res. 2(2), 87–92 (1994)CrossRefGoogle Scholar
  11. 11.
    Kiat, J.E., Long, D., Belli, R.F.: Attentional responses on an auditory oddball predict false memory susceptibility. Cogn. Affect. Behav. Neurosci., 1–15 (2018)Google Scholar
  12. 12.
    Kozlowska, K., Melkonian, D., Spooner, C.J., Scher, S., Meares, R.: Cortical arousal in children and adolescents with functional neurological symptoms during the auditory oddball task. NeuroImage Clin. 13, 228–236 (2017)CrossRefGoogle Scholar
  13. 13.
    Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J., et al.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999)CrossRefGoogle Scholar
  14. 14.
    Lowet, E., Roberts, M.J., Bonizzi, P., Karel, J., De Weerd, P.: Quantifying neural oscillatory synchronization: a comparison between spectral coherence and phase-locking value approaches. PloS one 11(1), 20 (2016)CrossRefGoogle Scholar
  15. 15.
    Luck, S.J.: An Introduction to the Event-Related Potential Technique. MIT press, Cambridge (2014)Google Scholar
  16. 16.
    Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115(10), 2292–2307 (2004)CrossRefGoogle Scholar
  17. 17.
    Polich, J.: Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118(10), 2128–2148 (2007)CrossRefGoogle Scholar
  18. 18.
    Redolar Ripoll, D.: Cognitive Neuroscience. Editorial Panamericana, Madrid, p. 5 (2014)Google Scholar
  19. 19.
    Shim, M., Kim, D.W., Lee, S.H., Im, C.H.: Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia. Schizophr. Res. 156(2), 197–203 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Juana Valeria Hurtado-Rincón
    • 1
  • Francia Restrepo
    • 2
  • Jorge Ivan Padilla
    • 1
    • 2
    • 3
  • Hector Fabio Torres
    • 3
  • German Castellanos-Dominguez
    • 1
    • 2
    • 3
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Universidad Autónoma de ManizalesManizalesColombia
  3. 3.Universidad de CaldasManizalesColombia

Personalised recommendations