Advertisement

Identifiability and Cognitive Diagnosis Models

  • Gongjun XuEmail author
Chapter
Part of the Methodology of Educational Measurement and Assessment book series (MEMA)

Abstract

Cognitive Diagnosis Models (CDMs) are popular statistical tools in cognitive diagnosis assessment. CDMs can be viewed as restricted latent class models with constraints introduced by the Q-matrix and assumptions of how skill variables that are assigned to items via the Q-Matrix interact in the item function. As many other latent variable models do, the CDMs often suffer from nonidentifiability. This chapter focuses on the identifiability issue of the CDMs and present conditions to ensure identifiability, which can be directly applied to most of the CDMs.

Keywords

Cognitive diagnosis Identifiability Estimability Q-matrix 

References

  1. Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37, 3099–3132.CrossRefGoogle Scholar
  2. Bechger, T. M., Verstralen, H. H., & Verhelst, N. D. (2002). Equivalent linear logistic test models. Psychometrika, 67(1), 123–136.CrossRefGoogle Scholar
  3. Casella, G., & Berger, R. L. (2002). Statistical inference (2nd Ed.). Pacific Grove, CA: Duxbury Pacific Grove.Google Scholar
  4. Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2018). Bayesian estimation of the DINA Q matrix. Psychometrika, 83(1), 89–108.CrossRefGoogle Scholar
  5. Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850–866.CrossRefGoogle Scholar
  6. Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633–665.CrossRefGoogle Scholar
  7. de la Torre, J. (2008). An empirically-based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45, 343–362.CrossRefGoogle Scholar
  8. de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.CrossRefGoogle Scholar
  9. de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81, 253–273.CrossRefGoogle Scholar
  10. de la Torre, J., & Douglas, J. A. (2004). Higher order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.CrossRefGoogle Scholar
  11. DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.CrossRefGoogle Scholar
  12. DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447–468.CrossRefGoogle Scholar
  13. DiBello, L. V., Stout, W. F., & Roussos, L. A. (1995). Unified cognitive psychometric diagnostic assessment likelihood-based classification techniques. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 361–390). Hillsdale, NJ: Erlbaum Associates.Google Scholar
  14. Embretson, S. E., & Reise, S. P. (2013). Item response theory. Mahwah, NJ: Psychology Press.CrossRefGoogle Scholar
  15. Gabrielsen, A. (1978). Consistency and identifiability. Journal of Econometrics, 8(2), 261–263.CrossRefGoogle Scholar
  16. Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.CrossRefGoogle Scholar
  17. Gu, Y., Liu, J., Xu, G., & Ying, Z. (2018). Hypothesis testing of the Q-matrix. Psychometrika, 83(3), 515–537.CrossRefGoogle Scholar
  18. Gu, Y., & Xu, G. (2018a). Partial identifiability of restricted latent class models. arXiv preprint arXiv:1803.04353.Google Scholar
  19. Gu, Y., & Xu, G. (2018b, in press). The sufficient and necessary condition for the identifiability and estimability of the DINA model. Psychometrika, https://doi.org/10.1007/s11336-018-9619-8.
  20. Gyllenberg, M., Koski, T., Reilink, E., & Verlaan, M. (1994). Non-uniqueness in probabilistic numerical identification of bacteria. Journal of Applied Probability, 31, 542–548.CrossRefGoogle Scholar
  21. Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.CrossRefGoogle Scholar
  22. Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.CrossRefGoogle Scholar
  23. Koopmans, T. C. (Ed.) (1950). Statistical inference in dynamic economic models (Vol. 10). New York: Wiley, Inc.Google Scholar
  24. Koopmans, T. C., & Reiersøl, O. (1950). The identification of structural characteristics. Annals of Mathematical Statistics, 21, 165–181.CrossRefGoogle Scholar
  25. Kruskal, J. B. (1976). More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling. Psychometrika, 41(3), 281–293.CrossRefGoogle Scholar
  26. Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36, 548–564.CrossRefGoogle Scholar
  27. Liu, J., Xu, G., & Ying, Z. (2013). Theory of self-learning Q-matrix. Bernoulli, 19(5A), 1790–1817.CrossRefGoogle Scholar
  28. Maris, G., & Bechger, T. M. (2004). Equivalent MIRID models. Psychometrika, 69(4), 627–639.CrossRefGoogle Scholar
  29. Maris, G., & Bechger, T. M. (2009). Equivalent diagnostic classification models. Measurement, 7, 41–46.Google Scholar
  30. McHugh, R. B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331–347.CrossRefGoogle Scholar
  31. Reckase, M. (2009). Multidimensional item response theory (Vol. 150). New York/London: Springer.CrossRefGoogle Scholar
  32. Rothenberg, T. J. (1971). Identification in parametric models. Econometrica: Journal of the Econometric Society, 39, 577–591.CrossRefGoogle Scholar
  33. Rupp, A. A., & Templin, J. L. (2008). Effects of Q-matrix misspecification on parameter estimates and misclassification rates in the DINA model. Educational and Psychological Measurement, 68, 78–98.CrossRefGoogle Scholar
  34. Rupp, A. A., Templin, J. L., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: Guilford Press.Google Scholar
  35. San Martín, E., Rolin, J.-M., & Castro, L. M. (2013). Identification of the 1PL model with guessing parameter: Parametric and semi-parametric results. Psychometrika, 78(2), 341–379.CrossRefGoogle Scholar
  36. Tatsuoka, C. (2009a). Diagnostic models as partially ordered sets. Measurement, 7, 49–53.Google Scholar
  37. Tatsuoka, K. K. (2009b). Cognitive assessment: An introduction to the rule space method. New York: Routledge.CrossRefGoogle Scholar
  38. Templin, J. L., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 317–339.CrossRefGoogle Scholar
  39. Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287–305.CrossRefGoogle Scholar
  40. van der Linden, W. J., & Hambleton, R. K. (2013). Handbook of modern item response theory. New York, NY: Springer Science & Business Media.Google Scholar
  41. von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–307.CrossRefGoogle Scholar
  42. von Davier, M. (2014a). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67(1), 49–71.CrossRefGoogle Scholar
  43. von Davier, M. (2014b). The log-linear cognitive diagnostic model (lcdm) as a special case of the general diagnostic model (GDM). ETS Research Report Series, 2014(2), 1–13.CrossRefGoogle Scholar
  44. Wang, S., & Douglas, J. (2015). Consistency of nonparametric classification in cognitive diagnosis. Psychometrika, 80(1), 85–100.CrossRefGoogle Scholar
  45. Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45, 675–707.CrossRefGoogle Scholar
  46. Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284–1295.CrossRefGoogle Scholar
  47. Xu, G., & Zhang, S. (2016). Identifiability of diagnostic classification models. Psychometrika, 81, 625–649.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of MichiganAnn ArborUSA

Personalised recommendations