Advertisement

Explanatory Cognitive Diagnostic Models

  • Yoon Soo ParkEmail author
  • Young-Sun Lee
Chapter
Part of the Methodology of Educational Measurement and Assessment book series (MEMA)

Abstract

Student- and school-level information from large-scale educational data have been shown to explain trends in test taker performance and to inform factors that can enhance the learning environment. This study presents methods to specify and model predictive relationships of latent and observed explanatory variables within a cognitive diagnostic model, referred to as the Explanatory Cognitive Diagnostic Model (ECDM) framework. Explanatory factors can be incorporated simultaneously as observed covariates or latent variables (estimated using item response theory) that can explain patterns of attribute mastery. This chapter is divided into two studies that demonstrate real-world application using large-scale international testing data and simulation studies, which examine parameter recovery and classification for varying sample sizes and number of attributes. Simultaneous estimation of multiple observed and latent (using dichotomous and polytomous items as indicators for the latent construct) predictors show consistency in attribute classification and parameter recovery. Extensions of the ECDM framework are discussed.

References

  1. Bedeian, A. G., Day, D. V., & Kelloway, E. K. (1997). Correcting for measurement error attenuation in structural equation models: Some important reminders. Educational and Psychological Measurement, 57, 785–799.CrossRefGoogle Scholar
  2. Chang, M., & Kim, S. (2009). Computer access and computer use for science performance of racial and linguistic minority students. Journal of Educational Computing Research, 40, 469–501.CrossRefGoogle Scholar
  3. Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 311–359). New York, NY: Plenum Press.CrossRefGoogle Scholar
  4. Dayton, C. M., & MacReady, G. B. (1988). A latent class covariate model with applications to criterion-referenced testing. In R. Langeheine & J. Rost (Eds.), Latent trait and latent class models (pp. 129–143). New York, NY: Plenum Publications Inc.CrossRefGoogle Scholar
  5. De Boeck, P., & Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach. New York, NY: Springer.CrossRefGoogle Scholar
  6. de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115–130.CrossRefGoogle Scholar
  7. de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.CrossRefGoogle Scholar
  8. de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333–353.CrossRefGoogle Scholar
  9. DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.CrossRefGoogle Scholar
  10. DiBello, L. V., Roussos, L. A., & Stout, W. (2007). Review of cognitively diagnostic assessment and a summary of psychometric models. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 979–1030). Amsterdam, The Netherlands: Elsevier.Google Scholar
  11. Fox, J.-P., & Glas, C. A. W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika, 68(2), 169–191.CrossRefGoogle Scholar
  12. Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 333–352.CrossRefGoogle Scholar
  13. Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.CrossRefGoogle Scholar
  14. Huang, G. H., & Bandeen-Roche, K. (2004). Building an identifiable latent class model with covariate effects on underlying and measured variables. Psychometrika, 69, 5–32.CrossRefGoogle Scholar
  15. Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.CrossRefGoogle Scholar
  16. Mislevy, R. J., Johnson, E. G., & Muraki, E. (1992). Scaling procedures in NAEP. Journal of Educational and Behavioral Statistics, 17(2), 131–154.Google Scholar
  17. Park, H., Lawson, D., & Williams, H. E. (2012). Relationship between technology, parent, education, self-confidence, and academic aspiration of Hispanic immigrant students. Journal of Educational Computing Research, 46(3), 255–265.CrossRefGoogle Scholar
  18. Park, Y. S., & Lee, Y.-S. (2014). An extension of the DINA model using covariates: Examining factors affecting response probability and latent classification. Applied Psychological Measurement, 38, 376–390.CrossRefGoogle Scholar
  19. Park, Y. S., Xing, K., & Lee, Y.-S. (2018). Explanatory cognitive diagnostic models: Incorporating latent and observed predictors. Applied Psychological Measurement, 42(5), 376–392.CrossRefGoogle Scholar
  20. Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York, NY: Guilford Press.Google Scholar
  21. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores (Psychometrika Monograph Supplement, No. 17).Google Scholar
  22. Tienken, C. H., & Wilson, M. J. (2007). The impact of computer assisted instruction on seventh-grade students’ mathematics achievement. Planning and Changing, 38, 181–190.Google Scholar
  23. Vermunt, J. K., & Magidson, J. (2013). Technical guide for latent GOLD 5.0: Basic, advanced, and syntax. Belmont, MA: Statistical Innovations, Inc.Google Scholar
  24. von Davier, M. (2005). A general diagnostic model applied to language testing data (Research Report RR-05-16). Princeton, NJ: ETS.Google Scholar
  25. von Davier, M. (2007). Mixture general diagnostic models (Research Report, RR-07-32). Princeton, NJ: ETS.Google Scholar
  26. von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical & Statistical Psychology, 61, 287–307.CrossRefGoogle Scholar
  27. von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 8–28.Google Scholar
  28. von Davier, M. (2014). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67, 49–71.CrossRefGoogle Scholar
  29. von Davier, M., Xu, X., & Carstensen, C. H. (2011). Measuring growth in a longitudinal large scale assessment with a general latent variable model. Psychometrika, 76(2), 318–336.CrossRefGoogle Scholar
  30. Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data (RR-08-27, ETS Research Report).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medical Education, College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Teachers CollegeColumbia UniversityNew YorkUSA

Personalised recommendations