Advertisement

Introduction: From Latent Classes to Cognitive Diagnostic Models

  • Matthias von DavierEmail author
  • Young-Sun Lee
Chapter
Part of the Methodology of Educational Measurement and Assessment book series (MEMA)

Abstract

This chapter provides historical and structural context for models and approaches presented in this volume, by presenting an overview of important predecessors of diagnostic classification models which we will refer to as DCM in this volume, or alternatively cognitive diagnostic models (CDMs). The chapter covers general notation and concepts central to latent class analysis, followed by an introduction of mastery models, ranging from deterministic to probabilistic forms. The ensuing sections cover knowledge state and rule space approaches, which can be viewed as deterministic skill-profile models. The chapter closes with a section on the multiple classification latent class model and the deterministic input noisy and (DINA) model.

References

  1. Albert, D., & Lukas, J. (1999). Knowledge spaces: Theories, empirical research and applications. Mahwah, NJ: Erlbaum.CrossRefGoogle Scholar
  2. Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37(6A), 3099–3132.  https://doi.org/10.1214/09-AOS689 CrossRefGoogle Scholar
  3. Croon, M. A. (1990). Latent class analysis with ordered classes. British Journal of Mathematical and Statistical Psychology, 43, 171–192.CrossRefGoogle Scholar
  4. Dayton, C. M., & Macready, G. (2006). Latent class analysis in psychometrics. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics, Vol. 26: Psychometrics (pp. 45–79). Elsevier Science B.V.: Amsterdam, The Netherlands.Google Scholar
  5. de la Torre, J. (2009, March). DINA Model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115–130.CrossRefGoogle Scholar
  6. Decarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 8–26.CrossRefGoogle Scholar
  7. Doignon, J. P., & Falmagne, J. C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175–196.CrossRefGoogle Scholar
  8. Doignon, J. P., & Falmagne, J. C. (1998). Knowledge spaces. Berlin, Germany: Springer.Google Scholar
  9. Fang, G, Liu, J., & Ying, Z. (2017). On the identifiability of diagnostic classification models (Submitted on 5 Jun 2017) arXiv:1706.01240 [math.ST].Google Scholar
  10. Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87–111.CrossRefGoogle Scholar
  11. Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87(418), 476–486.  https://doi.org/10.1080/01621459.1992.10475229 CrossRefGoogle Scholar
  12. Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.CrossRefGoogle Scholar
  13. Gutmann, M. U., & Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In International Conference on Artificial Intelligence and Statistics, 2010.Google Scholar
  14. Gutmann, M. U., & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. Journal of Machine Learning Research, 13, 307–361.Google Scholar
  15. Haberman, S. J. (1979). Qualitative data analysis: Vol. 2. New developments. New York, NY: Academic.Google Scholar
  16. Haberman, S. J., von Davier, M., & Lee, Y. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions. RR-08-45. ETS Research Report.  https://doi.org/10.1002/j.2333-8504.2008.tb02131.x
  17. Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 301–321.CrossRefGoogle Scholar
  18. Hagenaars, J. A. (1993). Loglinear models with latent variables. In Sage University Papers (Vol. 94). Newbury Park, CA: Sage Publications.Google Scholar
  19. Hagenaars, J. A., & McCutcheon, A. L. (Eds.). (2002). Applied latent class analysis models. Cambridge, UK: Cambridge University Press.Google Scholar
  20. Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258–272.CrossRefGoogle Scholar
  21. Langeheine, R., & Rost, J. (Eds.). (1988). Latent trait and latent class models. New York, NY: Plenum Press.Google Scholar
  22. Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin Company.Google Scholar
  23. Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy model for cognitive assessment: A variation on Tatsuoka’s rule-space approach. Journal of Educational Measurement, 41, 205–237.CrossRefGoogle Scholar
  24. Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 2, 99–120.CrossRefGoogle Scholar
  25. Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187–212.CrossRefGoogle Scholar
  26. Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R., Waldorp, L. J., … Maris, G. (2018). An introduction to network psychometrics: Relating ising network models to item response theory models. Multivariate Behavioral Research, 53(1), 15–35.  https://doi.org/10.1080/00273171.2017.1379379 CrossRefGoogle Scholar
  27. Piaget, J. (1950). The psychology of intelligence (M. Piercy, Trans.). London, UK: Lowe & Brydone (Original work published 1947).Google Scholar
  28. Reis, S. M., McGuire, J. M., & Neu, T. W. (2000). Compensation strategies used by high ability students with learning disabilities. The Gifted Child Quarterly, 44, 123–134.CrossRefGoogle Scholar
  29. Rost, J., & Langeheine, R. (Eds.). (1997). Applications of latent trait and latent class models in the social sciences. Waxmann Publishers.Google Scholar
  30. Schrepp, M. (2005). About the connection between knowledge structures and latent class models. Methodology, 1, 92–102.CrossRefGoogle Scholar
  31. Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston, MA: Addison-Wesley.Google Scholar
  32. Tatsuoka, K. K. (1983). Rule-space: An approach for dealing with misconceptions based on item response theory. Journal of Educational Measurement, 20, 345–354.CrossRefGoogle Scholar
  33. Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconceptions by the pattern classification approach. Journal of Educational Statistics, 10(1), 55–73.  https://doi.org/10.2307/1164930. https://www.jstor.org/stable/1164930 CrossRefGoogle Scholar
  34. Tatsuoka, K. K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, & M. G. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 453–488). Hillsdale, NJ: Erlbaum.Google Scholar
  35. Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. New York, NY: Routledge.CrossRefGoogle Scholar
  36. von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement, 7, 67–74.Google Scholar
  37. von Davier, M. (2013). The DINA model as a constrained general diagnostic model - two variants of a model equivalency. BJMSP, 67, 49–71. http://onlinelibrary.wiley.com/doi/10.1111/bmsp.12003/abstract Google Scholar
  38. von Davier, M. (2014). The log-linear cognitive diagnostic model (LCDM) as a special case of the general diagnostic model (GDM) (ETS research report series). http://onlinelibrary.wiley.com/doi/10.1002/ets2.12043/abstract
  39. von Davier, M. (2018). Diagnosing diagnostic models: From von Neumann’s elephant to model equivalencies and network psychometrics. Measurement: Interdisciplinary Research and Perspectives, 16(1), 59–70.  https://doi.org/10.1080/15366367.2018.1436827 CrossRefGoogle Scholar
  40. von Davier, M., & Yamamoto, K. (2004). Partially observed mixtures of IRT models: An extension of the generalized partial credit model. Applied Psychological Measurement, 28(6), 389–406.CrossRefGoogle Scholar
  41. von Davier, M., & Carstensen, C. H. (2007). Multivariate and mixture distribution Rasch models–extensions and applications. (Editor of the volume). New York: Springer. ISBN: 978-0387-32916-1.Google Scholar
  42. von Davier, M., & Haberman, S. J. (2014). Hierarchical diagnostic classification models morphing into unidimensional ‘Diagnostic’ classification models – A commentary. Psychometrika, 79, 340.  https://doi.org/10.1007/s11336-013-9363-z CrossRefGoogle Scholar
  43. von Davier, M., DiBello, L., & Yamamoto, K. (2008). Chapter 7: Reporting test outcomes using models for cognitive diagnosis. In J. Hartig, E. Klieme, & D. Leutner (Eds.) Assessment of competencies in educational contexts (pp. 151–176). Hogrefe & Huber Publishers.Google Scholar
  44. Wilson, M. (1989). Saltus: A psychometric model of discontinuity in cognitive development. Psychological Bulletin, 105, 276–289.CrossRefGoogle Scholar
  45. Xu, X., & von Davier, M. (2008). Comparing multiple-group multinomial loglinear models for multidimensional skill distributions in the general diagnostic model. RR-08-35, ETS Research Report.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Board of Medical Examiners (NBME)PhiladelphiaUSA
  2. 2.Teachers CollegeColumbia UniversityNew YorkUSA

Personalised recommendations