Advertisement

Maximum Power Extraction from the Photovoltaic System Under Partial Shading Conditions

  • Hassan M. H. Farh
  • Ali M. EltamalyEmail author
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Partial shading condition (PSC) has a bad effect not only on the shaded PV modules/arrays itself but also on the output power generated from the partially shaded photovoltaic (PSPV) system. It reduces the output power generated from the photovoltaic (PV) system and contributes in hot spot problem that may lead to thermal breakdown of shaded PV modules. Under PSC, multiple peaks, one global peak (GP) and many other local peaks (LPs) are generated in the PV curve. This chapter concentrates on alleviating the partial shading effects and extracting the global maximum power available from the PSPV system. This has been achieved using the suitable and the best PV system design topologies and the efficient maximum power point tracker (MPPT) techniques in tracking the GP under PSC. Therefore, it is concluded that the partial shading (PS) mitigation techniques can be classified into PV system design topologies and MPPT techniques to not only alleviate the PS effects of the PSPV system but also to extract the GP. The PV system design topologies consist of the bypass and blocking diodes, PV system architectures, PV array configuration and PV array reconfiguration, whereas the MPPT techniques concentrate the most efficient heuristic MPPT in tracking the GP under PSC.

References

  1. 1.
    Arunkumari T, Indragandhi V (2017) An overview of high voltage conversion ratio DC-DC converter configurations used in DC micro-grid architectures. Renew Sustain Energy Rev 77:670–687CrossRefGoogle Scholar
  2. 2.
    Saharia BJ, Saharia KK (2015) Simulated study on nonisolated DC-DC converters for MPP tracking for photovoltaic power systems. J Energy Eng 142(1):04015001CrossRefGoogle Scholar
  3. 3.
    Farh HM, Othman MF, Eltamaly AM (2017) Maximum power extraction from grid-connected PV system. In: 2017 Saudi Arabia smart grid (SASG). IEEE, pp 1–6Google Scholar
  4. 4.
    Eltamaly AM, Farh HM, Othman MF (2018) A novel evaluation index for the photovoltaic maximum power point tracker techniques. Sol Energy 174:940–956CrossRefGoogle Scholar
  5. 5.
    Farh H, Othman M, Eltamaly A, Al-Saud M (2018) Maximum power extraction from a partially shaded PV system using an interleaved boost converter. Energies 11(10):2543CrossRefGoogle Scholar
  6. 6.
    Eltamaly AM, Farh HM (2013) Maximum power extraction from wind energy system based on fuzzy logic control. Electr Power Syst Res 97:144–150CrossRefGoogle Scholar
  7. 7.
    Eltamaly AM, Farh HM (2015) Smart maximum power extraction for wind energy systems. In: 2015 IEEE international conference on smart energy grid engineering (SEGE). IEEE, pp 1–6Google Scholar
  8. 8.
    Eltamaly AM, Alolah A, Farh HM (2013) Maximum power extraction from utility-interfaced wind turbines. In: New developments in renewable energy. InTechGoogle Scholar
  9. 9.
    Mohamed MA, Eltamaly AM, Farh HM, Alolah AI (2015) Energy management and renewable energy integration in smart grid system. In: 2015 IEEE international conference on smart energy grid engineering (SEGE). IEEE, pp 1–6Google Scholar
  10. 10.
    Ji Y-H, Jung D-Y, Kim J-G, Kim J-H, Lee T-W, Won C-Y (2011) A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans Power Electron 26(4):1001–1009CrossRefGoogle Scholar
  11. 11.
    Silvestre S, Chouder A (2008) Effects of shadowing on photovoltaic module performance. Prog Photovoltaics Res Appl 16(2):141–149CrossRefGoogle Scholar
  12. 12.
    Eltamaly AM (2015) Performance of smart maximum power point tracker under partial shading conditions of photovoltaic systems. J Renew Sustain Energy 7(4):043141CrossRefGoogle Scholar
  13. 13.
    Duong MQ, Sava GN, Ionescu G, Necula H, Leva S, Mussetta M (2017) Optimal bypass diode configuration for PV arrays under shading influence. In: 2017 IEEE international conference on environment and electrical engineering and 2017 IEEE industrial and commercial power systems Europe (EEEIC/I&CPS Europe). IEEE, pp 1–5Google Scholar
  14. 14.
    Teo J, Tan RH, Mok V, Ramachandaramurthy VK, Tan C (2018) Impact of partial shading on the PV characteristics and the maximum power of a photovoltaic string. Energies 11(7):1–22CrossRefGoogle Scholar
  15. 15.
    Rezk H, Eltamaly AM (2015) A comprehensive comparison of different MPPT techniques for photovoltaic systems. Sol Energy 112:1–11CrossRefGoogle Scholar
  16. 16.
    Ram JP, Rajasekar N (2017) A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC). Energy 118:512–525CrossRefGoogle Scholar
  17. 17.
    soufyane Benyoucef A, Chouder A, Kara K, Silvestre S (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48CrossRefGoogle Scholar
  18. 18.
    Sundareswaran K, Sankar P, Nayak P, Simon SP, Palani S (2015) Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony. IEEE Trans Sustain Energy 6(1):198–209CrossRefGoogle Scholar
  19. 19.
    Sundareswaran K, Peddapati S, Palani S (2014) MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies. IEEE Trans Energy Convers 29(2):463–472CrossRefGoogle Scholar
  20. 20.
    Teshome D, Lee C, Lin Y, Lian K (2017) A modified firefly algorithm for photovoltaic maximum power point tracking control under partial shading. IEEE J Emerg Sel Topics Power Electron 5(2):661–671CrossRefGoogle Scholar
  21. 21.
    Jiang LL, Maskell DL, Patra JC (2013) A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build 58:227–236CrossRefGoogle Scholar
  22. 22.
    Ahmed J, Salam Z (2014) A maximum power point tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. Appl Energy 119(Supplement C):118–130CrossRefGoogle Scholar
  23. 23.
    Chao K-H, Lin Y-S, Lai U-D (2015) Improved particle swarm optimization for maximum power point tracking in photovoltaic module arrays. Appl Energy 158:609–618CrossRefGoogle Scholar
  24. 24.
    Rajasekar N et al (2014) Application of modified particle swarm optimization for maximum power point tracking under partial shading condition. Energy Procedia 61:2633–2639CrossRefGoogle Scholar
  25. 25.
    Farh HM, Eltamaly AM, Othman MF (2018) Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system. PLoS ONE 13(11):e0206171CrossRefGoogle Scholar
  26. 26.
    Eltamaly AM, Farh HM (2019) Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Sol Energy 177:306–316CrossRefGoogle Scholar
  27. 27.
    Patel H, Agarwal V (2008) MATLAB-based modeling to study the effects of partial shading on PV array characteristics. IEEE Trans Energy Convers 23(1):302–310CrossRefGoogle Scholar
  28. 28.
    Chin CS, Neelakantan P, Yang SS, Chua BL, Tze Kin Teo K (2011) Effect of partially shaded conditions on photovoltaic array’s maximum power point tracking. Int J Simul–Syst Sci Technol 12(3)Google Scholar
  29. 29.
    Eltamaly AM (2018) Performance of MPPT techniques of photovoltaic systems under normal and partial shading conditions. In: Advances in renewable energies and power technologies. Elsevier, pp 115–161Google Scholar
  30. 30.
    Singh PO (2011) Modeling of photovoltaic arrays under shading patterns with reconfigurable switching and bypass diodes. Theses and dissertationsGoogle Scholar
  31. 31.
    Bidram A, Davoudi A, Balog RS (2012) Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J Photovoltaics 2(4):532–546CrossRefGoogle Scholar
  32. 32.
    Ramaprabha R, Mathur B (2012) A comprehensive review and analysis of solar photovoltaic array configurations under partial shaded conditions. Int J Photoenergy 2012Google Scholar
  33. 33.
    Wang Y-J, Hsu P-C (2009) Analysis of partially shaded PV modules using piecewise linear parallel branches model. World Acad Sci Eng Technol 60(2):783–789Google Scholar
  34. 34.
    Wang Y-J, Hsu P-C (2011) An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy 36(5):3069–3078CrossRefGoogle Scholar
  35. 35.
    Kaushika ND, Gautam NK (2003) Energy yield simulations of interconnected solar PV arrays. IEEE Trans Energy Convers 18(1):127–134CrossRefGoogle Scholar
  36. 36.
    Karatepe E, Boztepe M, Colak M (2007) Development of a suitable model for characterizing photovoltaic arrays with shaded solar cells. Sol Energy 81(8):977–992CrossRefGoogle Scholar
  37. 37.
    Wang Y-J, Lin S-S (2011) Analysis of a partially shaded PV array considering different module connection schemes and effects of bypass diodes. In: 2011 international conference and utility exhibition on power and energy systems: issues & prospects for Asia (ICUE). IEEE, pp 1–7Google Scholar
  38. 38.
    Picault D, Raison B, Bacha S, Aguilera J, De La Casa J (2010) Changing photovoltaic array interconnections to reduce mismatch losses: a case study. In: 2010 9th international conference on environment and electrical engineering (EEEIC). IEEE, pp 37–40Google Scholar
  39. 39.
    Das SK, Verma D, Nema S, Nema R (2017) Shading mitigation techniques: state-of-the-art in photovoltaic applications. Renew Sustain Energy Rev 78:369–390CrossRefGoogle Scholar
  40. 40.
    Kandemir E, Cetin NS, Borekci S (2017) A comprehensive overview of maximum power extraction methods for PV systems. Renew Sustain Energy Rev 78:93–112CrossRefGoogle Scholar
  41. 41.
    Xia Q (2012) Solar photovoltaic system modeling and control. University of DenverGoogle Scholar
  42. 42.
    Dhople SV, Ehlmann JL, Davoudi A, Chapman PL (2010) Multiple-input boost converter to minimize power losses due to partial shading in photovoltaic modules. In: 2010 IEEE energy conversion congress and exposition (ECCE). IEEE, pp 2633–2636Google Scholar
  43. 43.
    Garth DR, Muldoon W, Benson G, Costague E (1971) Multi-phase, 2-kilowatt, high-voltage, regulated power supply. In: 1971 IEEE power electronics specialists conference. IEEE, pp 110–116Google Scholar
  44. 44.
    Benyahia N et al (2014) MPPT controller for an interleaved boost dc–dc converter used in fuel cell electric vehicles. Int J Hydrogen Energy 39(27):15196–15205CrossRefGoogle Scholar
  45. 45.
    Arango E, Ramos-Paja CA, Calvente J, Giral R, Serna S (2012) Asymmetrical interleaved DC/DC switching converters for photovoltaic and fuel cell applications—part 1: circuit generation, analysis and design. Energies 5(11):4590–4623CrossRefGoogle Scholar
  46. 46.
    Deihimi A, Mahmoodieh MES, Iravani R (2017) A new multi-input step-up DC–DC converter for hybrid energy systems. Electr Power Syst Res 149:111–124CrossRefGoogle Scholar
  47. 47.
    Mohapatra A, Nayak B, Das P, Mohanty KB (2017) A review on MPPT techniques of PV system under partial shading condition. Renew Sustain Energy Rev 80:854–867CrossRefGoogle Scholar
  48. 48.
    Lakpathi G, Reddy SM, Ganesh KL, Satyanarayana G (2013) An effective high step-up interleaved DC-DC converter photovoltaic grid connection systemGoogle Scholar
  49. 49.
    Khadmun W, Subsingha W (2013) High voltage gain interleaved DC boost converter application for photovoltaic generation system. Energy Procedia 34(Supplement C):390–398CrossRefGoogle Scholar
  50. 50.
    Khosroshahi A, Abapour M, Sabahi M (2015) Reliability evaluation of conventional and interleaved DC–DC boost converters. IEEE Trans Power Electron 30(10):5821–5828CrossRefGoogle Scholar
  51. 51.
    Henn GA, Silva R, Praca PP, Barreto LH, Oliveira DS (2010) Interleaved-boost converter with high voltage gain. IEEE Trans Power Electron 25(11):2753–2761CrossRefGoogle Scholar
  52. 52.
    Yang B, Li W, Zhao Y, He X (2010) Design and analysis of a grid-connected photovoltaic power system. IEEE Trans Power Electron 25(4):992–1000CrossRefGoogle Scholar
  53. 53.
    Ramaprabha R, Balaji K, Raj S, Logeshwaran V (2013) Comparison of interleaved boost converter configurations for solar photovoltaic system interface. J Eng Res [TJER] 10(2):87–98CrossRefGoogle Scholar
  54. 54.
    Prasanth P, Seyezhai R (2016) Investigation of four phase interleaved boost converter under open loop and closed loop control schemes for battery charging applications. Int J Adv Mater Sci Eng (IJAMSE) 5(1)CrossRefGoogle Scholar
  55. 55.
    Aghdam FH, Hagh MT, Abapour M (2016) Reliability evaluation of two-stage interleaved boost converter interfacing PV panels based on mode of use. In: 2016 7th Power electronics and drive systems technologies conference (PEDSTC). IEEE, pp 409–414Google Scholar
  56. 56.
    Lai C-M, Cheng Y-H, Teh J, Lin Y-C (2017) A new combined boost converter with improved voltage gain as a battery-powered front-end interface for automotive audio amplifiers. Energies 10(8):1128CrossRefGoogle Scholar
  57. 57.
    Rehman Z, Al-Bahadly I, Mukhopadhyay S (2015) Multiinput DC–DC converters in renewable energy applications—an overview. Renew Sustain Energy Rev 41(Supplement C):521–539CrossRefGoogle Scholar
  58. 58.
    Ho CN-M, Breuninger H, Pettersson S, Escobar G, Canales F (2013) A comparative performance study of an interleaved boost converter using commercial Si and SiC diodes for PV applications. IEEE Trans Power Electron 28(1):289–299CrossRefGoogle Scholar
  59. 59.
    Lakpathi G, Reddy SM, Ganesh KL, Satyanarayana G (2013) An effective high step-up interleaved DC-DC converter photovoltaic grid connection system. Int J Soft Comput Eng (IJSCE) 3(4):2231–2307Google Scholar
  60. 60.
    Khadmun W, Subsingha W (2013) High voltage gain interleaved dc boost converter application for photovoltaic generation system. Energy Procedia 34:390–398CrossRefGoogle Scholar
  61. 61.
    Rehman Z, Al-Bahadly I, Mukhopadhyay S (2015) Multiinput DC–DC converters in renewable energy applications—an overview. Renew Sustain Energy Rev 41:521–539CrossRefGoogle Scholar
  62. 62.
    Nguyen D, Lehman B (2008) An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE Trans Ind Electron 55(7):2644–2654CrossRefGoogle Scholar
  63. 63.
    Karakose M, Baygin M, Baygin N, Murat K, Akin E (2014) An intelligent reconfiguration approach based on fuzzy partitioning in PV arrays. In: 2014 IEEE international symposium on innovations in intelligent systems and applications (INISTA) proceedings. IEEE, pp 356–360Google Scholar
  64. 64.
    Karakose M, Baygin M, Baygin N (2014) An analysis approach for optimization based reconfiguration in photovoltaic arrays. In: 2014 IEEE 23rd international symposium on industrial electronics (ISIE). IEEE, pp 954–959Google Scholar
  65. 65.
    Velasco G, Negroni J, Guinjoan F, Piqué R (2005) Energy generation in PV grid-connected systems: a comparative study depending on the PV generator configuration. In: IEEE international symposium on industrial electronics, pp 1025–1030Google Scholar
  66. 66.
    Velasco G, Guinjoan F, Pique R (2008) Grid-connected PV systems energy extraction improvement by means of an electric array reconfiguration (EAR) strategy: operating principle and experimental results. In: 2008 IEEE power electronics specialists conference, PESC 2008. IEEE, pp 1983–1988Google Scholar
  67. 67.
    Velasco-Quesada G, Guinjoan-Gispert F, Piqué-López R, Román-Lumbreras M, Conesa-Roca A (2009) Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems. IEEE Trans Ind Electron 56(11):4319–4331CrossRefGoogle Scholar
  68. 68.
    El-Dein MS, Kazerani M, Salama M (2013) Optimal photovoltaic array reconfiguration to reduce partial shading losses. IEEE Trans Sustain Energy 4(1):145–153CrossRefGoogle Scholar
  69. 69.
    Karakose M, Murat K, Akin E, Parlak K (2014) A new efficient reconfiguration approach based on genetic algorithm in PV systems. In: 2014 IEEE 23rd international symposium on industrial electronics (ISIE). IEEE, pp 23–28Google Scholar
  70. 70.
    Titri S, Larbes C, Toumi KY, Benatchba K (2017) A new MPPT controller based on the Ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl Soft Comput 58(Supplement C):465–479CrossRefGoogle Scholar
  71. 71.
    Ishaque K, Salam Z, Amjad M, Mekhilef S (2012) An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Trans Power Electron 27(8):3627–3638CrossRefGoogle Scholar
  72. 72.
    Ishaque K, Salam Z (2013) A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew Sustain Energy Rev 19:475–488CrossRefGoogle Scholar
  73. 73.
    Al-Obeidat F, Belacel N, Carretero JA, Mahanti P (2010) Automatic parameter settings for the PROAFTN classifier using hybrid particle swarm optimization. In: Canadian conference on AI, 2010. Springer, Berlin, pp 184–195CrossRefGoogle Scholar
  74. 74.
    Ishaque K, Salam Z, Taheri H, Shamsudin A (2011) Maximum power point tracking for PV system under partial shading condition via particle swarm optimization. In: 2011 IEEE applied power electronics colloquium (IAPEC). IEEE, pp 5–9Google Scholar
  75. 75.
    Liu Y, Xia D, He Z (2011) MPPT of a PV system based on the particle swarm optimization. In: 2011 4th international conference on electric utility deregulation and restructuring and power technologies (DRPT). IEEE, pp 1094–1096Google Scholar
  76. 76.
    Miyatake M, Inada T, Hiratsuka I, Zhao H, Otsuka H, Nakano M (2004) Control characteristics of a fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded. In: The 4th international power electronics and motion control conference, IPEMC 2004, vol 2. IEEE, pp 816–821Google Scholar
  77. 77.
    Eltamaly AM (2015) Performance of smart maximum power point tracker under partial shading conditions of PV systems. In: 2015 IEEE international conference on smart energy grid engineering (SEGE). IEEE, pp 1–8Google Scholar
  78. 78.
    Soltani I, Sarvi M, Marefatjou H (2013) An intelligent, fast and robust maximum power point tracking for proton exchange membrane fuel cell. World Appl Program 3(7):264–281Google Scholar
  79. 79.
    Ishaque K, Salam Z (2013) A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Trans Ind Electron 60(8):3195–3206Google Scholar
  80. 80.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  81. 81.
    Cherukuri SK, Rayapudi SR (2017) Enhanced grey wolf optimizer based MPPT algorithm of PV system under partial shaded condition. Int J Renew Energy Dev 6(3):203CrossRefGoogle Scholar
  82. 82.
    Abdelaziz A, Ali E, Elazim SA (2016) Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index. Eng Sci Technol Int J 19(1):610–618CrossRefGoogle Scholar
  83. 83.
    Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, 2012. Springer, Berlin, pp 240–249CrossRefGoogle Scholar
  84. 84.
    Daraban S, Petreus D, Morel C (2014) A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading. Energy 74:374–388CrossRefGoogle Scholar
  85. 85.
    Jiang LL, Nayanasiri D, Maskell DL, Vilathgamuwa D (2015) A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics. Renew Energy 76:53–65CrossRefGoogle Scholar
  86. 86.
    Punitha K, Devaraj D, Sakthivel S (2013) Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 62:330–340CrossRefGoogle Scholar
  87. 87.
    Larbes C, Cheikh SA, Obeidi T, Zerguerras A (2009) Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew Energy 34(10):2093–2100CrossRefGoogle Scholar
  88. 88.
    Kulaksız AA, Akkaya R (2012) A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Sol Energy 86(9):2366–2375CrossRefGoogle Scholar
  89. 89.
    Karatepe E, Hiyama T (2009) Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew Power Gener 3(2):239–253CrossRefGoogle Scholar
  90. 90.
    Farh HM, Eltamaly AM (2013) Fuzzy logic control of wind energy conversion system. J Renew Sustain Energy 5(2):023125CrossRefGoogle Scholar
  91. 91.
    Eltamaly AM (2010) Modeling of fuzzy logic controller for photovoltaic maximum power point tracker. In: Solar future 2010 conference, Istanbul, TurkeyGoogle Scholar
  92. 92.
    Boukenoui R, Salhi H, Bradai R, Mellit A (2016) A new intelligent MPPT method for stand-alone photovoltaic systems operating under fast transient variations of shading patterns. Sol Energy 124:124–142CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentCollege of Engineering, King Saud UniversityRiyadhSaudi Arabia
  2. 2.Electrical Engineering DepartmentMansoura UniversityMansouraEgypt
  3. 3.Sustainable Energy Technologies CenterKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations