Green Synthesis of Iron Oxide Nanoparticles: Cutting Edge Technology and Multifaceted Applications

  • Rakesh K. Bachheti
  • Rocktotpal Konwarh
  • Vartika Gupta
  • Azamal Husen
  • Archana Joshi


Iron oxide nanoparticles (NPs) have garnered immense research impetus in multiple domains over the years. Use of various plants (with compositional abundance of different bioactive components, acting as bioreductants/stabilizers/capping agents) for generation of iron oxide NPs has been one of the focal points of investigation in the realm of green nanotechnology. This chapter is an attempt to make the readers au courant with the research on phytogenesis of iron oxide NPs. The chapter is streamlined towards the discussion of general features of phytomediated preparations of iron oxide NPs, encompassing the exemplary endeavours made during the recent years. Highlights of applications of the phytogenerated iron oxide NPs in the niches of antimicrobial and anticancer therapy, catalysis, metal-ion adsorption and agriculture, amongst others, are presented.


Iron oxide nanoparticles Phytosynthesis Antimicrobial Catalysis Green nanotechnology 


  1. Ahmmad B, Leonard K, Islam MS, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y (2013) Green synthesis of mesoporous hematite (a-Fe2O3) nanoparticles and their photocatalytic activity. Adv Powder Technol 24:160–167CrossRefGoogle Scholar
  2. Ali A, Zafar H, Zia M, UL Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Ruqeishi MS, Mohiuddin T, Al-Saadi LK (2016) Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment. Arab J Chem.
  4. Awwad AM, Salem NM (2012) A green and facile approach for synthesis of magnetite nanoparticles. Nanosci Nanotechnol 2:208–213CrossRefGoogle Scholar
  5. Balamurughan MG, Mohanraj S, Kodhaiyolii S, Pugalenthi V (2014) Ocimum sanctum leaf extract mediated green synthesis of iron oxide nanoparticles: spectroscopic and microscopic studies. J Chem Pharma Sci Special Issue 4:201–204Google Scholar
  6. Barabadi H, Ovais M, Shinwari ZK, Saravanan M (2017) Anti-cancer green bionanomaterials: present status and future prospects. Green Chem Lett Rev 10:285–314CrossRefGoogle Scholar
  7. Barreto JC, Trevisan MT, Hull WE, Erben G, Brito ESD, Pfundstein B, Würtele G, Spiegelhalder B, Owen RW (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L). J Agric Food Chem 56:5599–5610PubMedCrossRefGoogle Scholar
  8. Barua S, Konwarh R, Mandal M, Gopalakrishnan R, Kumar D, Karak N (2013) Biomimetically prepared antibacterial, free radical scavenging poly(ethylene glycol) supported silver nanoparticles as Aedes albopictus larvicide. Adv Sci Eng Med 5:291–298CrossRefGoogle Scholar
  9. Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM, Taghizadeh S (2018) Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl Phys A Mater Sci Process 124:363CrossRefGoogle Scholar
  10. Can HK, Kavlak S, ParviziKhosroshahi S, Güner A (2018) Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIO-NPs). Artif Cells Nanomed Biotechnol 46:421–431PubMedCrossRefGoogle Scholar
  11. Carvalho SS, Carvalho NM (2017) Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. J Environ Manag 187:82–88CrossRefGoogle Scholar
  12. Daniel SK, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15:1319CrossRefGoogle Scholar
  13. Devi HS, Boda MA, Shah MA, Parveen S, Wani AH (2018) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth 1–8.–0145
  14. Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 43:493–507PubMedCrossRefGoogle Scholar
  15. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peels extract. J Environ Health Sci Eng 13:84PubMedPubMedCentralCrossRefGoogle Scholar
  16. El-Kassas HY, Ghobrial MG (2017) Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against Oscillatoria simplicissima. Environ Sci Pollut Res 24(8):7837–7849CrossRefGoogle Scholar
  17. Esam JAK (2015) Green synthesis of magnetite iron oxide nanoparticles by using Al-Abbas’s (AS) hund fruit (Citrus medica) var. Sarcodactylis Swingle extract and used in Al-’alqami river water treatment. J Nat Sci Res 5:125–135Google Scholar
  18. Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8:2082PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gan L, Lu Z, Cao D, Chen Z (2018) Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater Sci Eng 82:41–45CrossRefGoogle Scholar
  20. Groiss S, Selvaraj R, Thivaharan V, Vinayagam R (2016) Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J Mol Struct 1128:572–578CrossRefGoogle Scholar
  21. Hassan SS, Abdel-Shafy HI, Mansour MS (2018) Removal of pyrene and benzo (a) pyrene micropollutant from water via adsorption by green synthesized iron oxide nanoparticles. Adv Nat Sci Nanosci Nanotech 9:015006CrossRefGoogle Scholar
  22. Herlekar M, Siddhivinayak B (2015) Optimization of microwave assisted green synthesis protocol for iron oxide nanoparticles and its application for simultaneous removal of multiple pollutants from domestic sewage. Int J Adv Res 3:331–345Google Scholar
  23. Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesize iron oxide nanoparticles. Appl Phy A 91:241–246CrossRefGoogle Scholar
  24. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804PubMedCrossRefPubMedCentralGoogle Scholar
  25. Husen A (2017) Gold Nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479CrossRefGoogle Scholar
  26. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229PubMedPubMedCentralCrossRefGoogle Scholar
  27. Irshad R, Tahira K, Li B, Ahmada A, Siddiquia AR, Nazir S (2017) Antibacterial activity of biochemically capped iron oxide nanoparticles: a view towards green chemistry. J Photochem Photobio B 170:241–246CrossRefGoogle Scholar
  28. Ivashchenko O, Gapiński J, Peplińska B, Przysiecka Ł, Zalewski T, Nowaczyk G, Jarek M, Marcinkowska-Gapińska A, Jurga S (2017) Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: characterization, biomedical potential and microstructure analysis of hydrocolloids. Mater Des 133:307–324CrossRefGoogle Scholar
  29. Izadiyan Z, Shameli K, Miyake M, Hara H, Mohamad SEB, Kalantari K, Taib SHM, Rasouli E (2018) Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian J Chem.
  30. Jun YW, Seo JW, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189PubMedCrossRefGoogle Scholar
  31. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M (2017) Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck) and their pharmacognostic properties. Green Chem Lett Rev 10:186–201CrossRefGoogle Scholar
  32. Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20:225107PubMedCrossRefGoogle Scholar
  33. Konwarh R, Kalita D, Mahanta C, Mandal M, Karak N (2010) Magnetically recyclable, antimicrobial, and catalytically enhanced polymer-assisted green nanosystem-immobilized Aspergillus niger amyloglucosidase. Appl Microbiol Biotechnol 87:1983–1992PubMedCrossRefGoogle Scholar
  34. Konwarh R, Pramanik S, Devi KSP, Saikia N, Boruah R, Maiti TK, Deka RC, Karak N (2012) Lycopene coupled ‘trifoliate’ polyaniline nanofibers as multi-functional biomaterial. J Mater Chem 22:15062–15070CrossRefGoogle Scholar
  35. Konwarh R, Shail M, Medhi T, Mandal M, Karak N (2014) Sonication assisted assemblage of exotic polymer supported nanostructured bio-hybrid system and prospective application. Ultrason Sonochem 21:634–642PubMedCrossRefGoogle Scholar
  36. Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73PubMedCrossRefGoogle Scholar
  37. Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 102:128–133CrossRefGoogle Scholar
  38. Kumar B, Smita K, Cumbal L, Debut A (2014) Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc 18:364–369CrossRefGoogle Scholar
  39. Kumar JP, Konwarh R, Kumar M, Gangrade A, Mandal BB (2017) Potential nanomedicine applications of multifunctional carbon nanoparticles developed using green technology. ACS Sustain Chem Eng 6:1235–1245CrossRefGoogle Scholar
  40. Latha N, Gowri M (2014) Bio synthesis and characterisation of Fe3O4 nanoparticles using caricaya papaya leaves extract. Syn Int J Sci Res 3:1551–1556Google Scholar
  41. Lin J, Su B, Sun M, Bo C, Zuliang C (2018) Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Sci Total Environ 627:314–321PubMedCrossRefGoogle Scholar
  42. López-Téllez G, Balderas-Hernández P, Barrera-Díaz CE, Vilchis-Nestor AR, Roa-Morales G, Bilyeu B (2013) Green method to form iron oxide nanorods in orange peels for chromium (VI) reduction. J Nanosci Nanotechnol 13:2354–2361PubMedCrossRefGoogle Scholar
  43. Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31CrossRefGoogle Scholar
  44. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988PubMedCrossRefGoogle Scholar
  45. Manquián-Cerda K, Cruces E, Angélica RM, Reyes C, Arancibia-Miranda N (2017) Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: reactivity, characterization and removal mechanism of arsenate. Ecotoxicol Environ Saf 145:69–77PubMedCrossRefGoogle Scholar
  46. Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, Mohammad A, Nishat N (2018) Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: characterization, antibacterial and antioxidant activity. J Photochem Photobiol B 185:262–274PubMedCrossRefGoogle Scholar
  47. Mobasser S, Firoozi AA (2016) Review of nanotechnology applications in science and engineering. J Civil Eng Urban 6:84–93Google Scholar
  48. Mohanasundaram S, Hemalatha S, Vanitha V, Bharathi NP, Jayalakshmi M, Pushpabharathi N (2017) Deciphering the cytotoxic activity of Annona squamosa iron oxide nanoparticles against selective cancer cell line. Int J Res Pharm Sci 8(2):259–263Google Scholar
  49. Moradi B, Nabiyouni G, Ghanbari D (2018) Rapid photo-degradation of toxic dye pollutants: green synthesis of mono-disperse Fe3O4–CeO2 nanocomposites in the presence of lemon extract. J Mater Sci Mater Electron 29(13):11065–11080CrossRefGoogle Scholar
  50. Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, Rajasekar A, Rajan M, Thiruppathi KP, Kumar S, Higuchi A (2018) Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Pollut Res 25:10504–10514CrossRefGoogle Scholar
  51. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, Chartrand MS, Yeap SK (2014) Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int J Nanomedicine 9:2479PubMedPubMedCentralCrossRefGoogle Scholar
  52. Narayanan SBN, Sathy U, Mony M, Koyakutty S, Nair V, Menon D (2012) Biocompatible magnetite/gold nano hybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces 4:251–260PubMedCrossRefPubMedCentralGoogle Scholar
  53. Neamtu M, Nadejde C, Hodoroaba VD, Schneider RJ, Verestiuc L, Panne U (2018) Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci Rep 8:6278Google Scholar
  54. Niraimathee VA, Subha V, Ravindran RE, Renganathan S (2016) Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int J Environ Sustain Dev 15:227–240CrossRefGoogle Scholar
  55. Nithya K, Sathish A, Kumar PS, Ramachandran T (2018) Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni (II) ions. J Ind Eng Chem 59:230–241CrossRefGoogle Scholar
  56. Patra JK, Baek KH (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol B 173:291–300PubMedCrossRefGoogle Scholar
  57. Phumying S, Labuayai S, Thomas C, Amornkitbamrung V, Swatsitang E, Maensiri S (2013) Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl Phys A Mater Sci Process 111(4):1187–1193CrossRefGoogle Scholar
  58. Plachtová P, Medříková Z, Zbořil R, Tuček J, Varma RS, Maršálek B (2018) Iron and Iron oxide nanoparticles synthesized with green tea extract: differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustain Chem Eng 6:8679–8687PubMedCrossRefGoogle Scholar
  59. Pramanik S, Konwarh R, Deka RC, Aidew L, Barua N, Buragohain AK, Mohanta D, Karak N (2013) Microwave-assisted poly (glycidyl methacrylate)-functionalized multiwall carbon nanotubes with a ‘tendrillar’ nanofibrous polyaniline wrapping and their interaction at bio-interface. Carbon 55:34–43CrossRefGoogle Scholar
  60. Prasad AS (2016) Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of garlic vine (Mansoa alliacea). Mater Sci Semicond Process 53:79–83CrossRefGoogle Scholar
  61. Purbia R, Paria S (2018) Noble metals decorated hierarchical maghemite magnetic tubes as an efficient recyclable catalyst. J Colloid Interface Sci 511:463–473PubMedCrossRefPubMedCentralGoogle Scholar
  62. Ramirez-Nuñez AL, Jimenez-Garcia LF, Goya GF, Sanz B, Santoyo-Salazar J (2018) In vitro magnetic hyperthermia using polyphenol-coated Fe3O4@γFe2O3 nanoparticles from Cinnamomun verum and Vanilla planifolia: the concert of green synthesis and therapeutic possibilities. Nanotechnology 29:074001PubMedCrossRefPubMedCentralGoogle Scholar
  63. Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe 0/Fe3O4 nanoparticles. J Contam Hydrol 146:63–73PubMedCrossRefPubMedCentralGoogle Scholar
  64. Rath KB, Singh A, Chandan S (2015) Biosynthesis of magnetic iron oxide nanoparticles using Hibiscus as a plant source. NanoTrends 17:1–9Google Scholar
  65. Reardon PJ, Konwarh R, Knowles JC, Mandal BB (2017) Mimicking hierarchical complexity of the osteochondral interface using electrospun silk-bioactive glass composites. ACS Appl Mater Interfaces 9:8000–8013PubMedCrossRefPubMedCentralGoogle Scholar
  66. Santoshi V, Shakila Banu A, Kurian GA (2015) Synthesis, characterization and biological evaluation of iron oxide nanoparticles prepared by Desmodium gangeticum root aqueous extract. Int J Pharm Pharm Sci 7(13):75–80Google Scholar
  67. Saranya S, Vijayaranai K, Pavithra S, Raihana N, Kumanan K (2017) In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicol Rep 4:427–430CrossRefGoogle Scholar
  68. Sathya K, Saravanathamizhan R, Baskar G (2017) Ultrasound assisted phytosynthesis of iron oxide nanoparticle. Ultrason Sonochem 39:446–451PubMedCrossRefPubMedCentralGoogle Scholar
  69. Sebastian A, Nangia A, Prasad MNV (2017) Carbon-bound iron oxide nanoparticles prevent calcium-induced iron deficiency in Oryza sativa L. J AgricFood Chem 65:557–564CrossRefGoogle Scholar
  70. Sebastian A, Nangia A, Prasad MNV (2018) A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. J Clean Prod 174:355–366CrossRefGoogle Scholar
  71. Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticle using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Biostruct 7:1655–1661Google Scholar
  72. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308PubMedPubMedCentralCrossRefGoogle Scholar
  73. Shahriary M, Veisi H, Hekmati M, Hemmati S (2018) In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater Sci Eng C 90:57–66CrossRefGoogle Scholar
  74. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266CrossRefGoogle Scholar
  75. Shojaee S, Mahdavi Shahri M (2018) An efficient synthesis and cytotoxic activity of 2-(4-chlorophenyl)-1H–benzo [d] imidazole obtained using a magnetically recyclable Fe3O4 nanocatalyst-mediated white tea extract. Appl Organomet Chem 32:e3934CrossRefGoogle Scholar
  76. Siddiqi KS, Husen A (2017) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23CrossRefGoogle Scholar
  77. Siddiqi KS, Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498CrossRefGoogle Scholar
  78. Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14CrossRefGoogle Scholar
  79. Siddiqi KS, Husen A, Sohrab SS, Osman M (2018b) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nano Res Lett 13:231CrossRefGoogle Scholar
  80. Sravanthi M, Kumar DM, Ravichandra M, Vasu G, Hemalatha KPJ (2016) Green synthesis and characterization of iron oxide nanoparticles using Wrightiatinctoria leaf extract and their antibacterial studies. Int J Curr Res Aca Rev 4:30–44CrossRefGoogle Scholar
  81. Sudha K, Anitta S, Devi PM, Thejomayah G (2015) Biosynthesis of iron nanoparticle from green banana peel extract. IJSSIR 4(6):165–176Google Scholar
  82. Thakur S, Karak N (2014) One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Mater Chem Phys 144:425–432CrossRefGoogle Scholar
  83. Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242CrossRefGoogle Scholar
  84. Tharunya P, Subha V, Kirubanandan S, Sandhaya S, Renganathan S (2017) Green synthesis of superparamagnetic iron oxide nanoparticle from Ficus carica fruit extract, characterization studies and its application on dye degradation studies. Asian J Pharm Clin Res 10:125–128Google Scholar
  85. Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi NVV (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244CrossRefGoogle Scholar
  86. Venkateswarlu S, Kumar BN, Prathima B, SubbaRao Y, Jyothi NVV (2014a) A novel green synthesis of Fe3O4 magnetic nanorods using Punica granatum rind extract and its application for removal of Pb (II) from aqueous environment. Arab J Chem.
  87. Venkateswarlu S, Kumar BN, Prasad CH, Venkateswarlu P, Jyothi NVV (2014b) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Physica B Condens Matter 449:67–71CrossRefGoogle Scholar
  88. Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi NVV (2015) A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Physica B Condens Matter 457:30–35CrossRefGoogle Scholar
  89. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rakesh K. Bachheti
    • 1
  • Rocktotpal Konwarh
    • 2
  • Vartika Gupta
    • 3
  • Azamal Husen
    • 4
  • Archana Joshi
    • 5
  1. 1.Department of Industrial ChemistryAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
  2. 2.Department of BiotechnologyAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
  3. 3.Department of ChemistryGraphic Era UniversityDehradunIndia
  4. 4.Department of Biology, College of Natural and Computational SciencesUniversity of GondarGondarEthiopia
  5. 5.Department of Environment ScienceGraphic Era UniversityDehradunIndia

Personalised recommendations