Advertisement

Plant-Based Fabrication of Silver Nanoparticles and Their Application

  • Vinod Kumar Mishra
  • Azamal Husen
  • Qazi Inamur Rahman
  • Muhammad Iqbal
  • Sayed Sartaj Sohrab
  • Mansur Osman Yassin
Chapter

Abstract

Silver nanoparticles (Ag NPs) are one of the most widely used engineered NPs. Several plants and their parts and products have been successfully used for efficient and rapid green synthesis of Ag NPs in nonhazardous ways. The size of Ag NPs obtained by the biogenic synthetic route may be controlled by monitoring the concentration, pH, incubation time, and temperature of the plant extract or biomass and that of the silver salt. Various techniques such as UV-Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering, zeta potential, surface-enhanced Raman spectroscopy, and nuclear magnetic resonance spectroscopy are used for the characterization of Ag NPs. These particles have been used in peptides, proteins, or nucleic acids delivery, catalytic activity, antimicrobial activity, and environmental monitoring. This chapter provides an overview of the current status of plant-mediated syntheses of Ag NPs, possible mechanisms involved, characterization of NPs, and their numerous applications in different disciplines of medicine, industry, agriculture, and pharmacy.

Keywords

Green synthesis Ag NPs Growth factors Biomedical Application 

References

  1. Abasi E, Milani M, Aval SF, Kouhi M, Akbarzadeh A, Nasrabadi HT, Nikasa P, Joo SW, Hanifehpour Y, Nejati-Koshki K, Samiei M (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Cri Rev Microbiol 42:173–180Google Scholar
  2. Ahamed M, Majeed Khan MA, Siddiqui MKJ, AlSalhi MS, Alrokayan SA (2011) Green synthesis: characterization and evaluation of biocompatibility silver nanoparticles. Physica E 43:1266–1271CrossRefGoogle Scholar
  3. Ahmad A, Wei Y, Syed F, Khan S, Khan GM, Tahir K, Khan AU, Raza M, Khan FU, Yuan Q (2016) Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J Photoch Photobio B 161:17–24CrossRefGoogle Scholar
  4. Ahmed MJ, Murtaza G, Mehmood A, Bhatti TM (2015) Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: characterization and antibacterial activity. Mater Lett 153:10–13CrossRefGoogle Scholar
  5. Ahmed S, Saifullah AM, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7CrossRefGoogle Scholar
  6. Ajitha B, Reddy YAK, Reddy PS (2015) Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: evaluation of their innate antimicrobial and catalytic activities. J Photoch Photobio B 146:1–9CrossRefGoogle Scholar
  7. Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS (2016) Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract- a comprehensive study. Mat Sci Eng C 58:359–365CrossRefGoogle Scholar
  8. Ali SG, Khan HM, Jalal M, Ansari MA, Mahdi AA, Ahmad MK (2015) Green synthesis of silver nanoparticles using the leaf extract of Putranjiva roxburghii wall. and their antimicrobial activity. Asian J Pharm Clinical Res 8:335–338Google Scholar
  9. Alishah H, Seyedi SP, Ebrahimipour SY, Esmaeili-Mahani S (2016) A green approach for silver nanoparticles using root extract of Chelidonium majus: characterization and antibacterial evaluation. J Cluster Sci 27:421–429CrossRefGoogle Scholar
  10. Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci 13:9923–9941PubMedPubMedCentralCrossRefGoogle Scholar
  11. Amooaghaie R, Saeri MR, Azizi M (2015) Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf 120:400–408PubMedCrossRefGoogle Scholar
  12. Andreescu D, Eastman C, Balantrapu K, Goia DVA (2007) Simple route for manufacturing highly dispersed silver nanoparticles. J Mater Res 22:2488–2496CrossRefGoogle Scholar
  13. Arunachalam K, Shanmuganathan B, Sreeja PS, Parimelazhagan T (2015) Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities. Environ Sci Pollut Res 22:18066–18075CrossRefGoogle Scholar
  14. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827PubMedCrossRefGoogle Scholar
  15. Austin LA, Kang B, Yen CW, El-Sayed MA (2011) Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjugate Chem 22:2324–2331CrossRefGoogle Scholar
  16. Awad MA, Mekhamer WK, Merghani NM, Hendi AA, Ortashi KMO, Al-Abbas F, Eisa NE (2015) Green synthesis, characterization and anti-bacterial activity of silver/polystyrene nanocomposite. J Nanomater 943821:6Google Scholar
  17. Bahrami-Teimoori B, Nikparast Y, Hojatianfar M, Akhlaghi M, Ghorbani R, Pourianfar HR (2017) Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. J Exp Nanosci 12:129–139CrossRefGoogle Scholar
  18. Balamanikandan T, Balaji S, Pandirajan J (2015) Biological Synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial and antifungal activity. World App Sci J 33:939–943Google Scholar
  19. Balashanmugam P, Balakumaran MD, Murugan R, Dhanapal K, Kalaichelvan PT (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64PubMedCrossRefPubMedCentralGoogle Scholar
  20. Banerjee PP, Bandyopadhyay A, Harsha SN, Policegoudra RS, Bhattacharya S, Karak N, Chattopadhyay A (2017) Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer 9:265–278PubMedGoogle Scholar
  21. Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate Chem 20:1497–1502CrossRefGoogle Scholar
  22. Barbinta-Patrascu ME, Badea N, Ungureanu C, Constantin M, Pirvu C, Rau I (2016) Silver-based biohybrids “green” synthesized from Chelidonium majus L. Opt Mater 56:94–99CrossRefGoogle Scholar
  23. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857PubMedCrossRefPubMedCentralGoogle Scholar
  24. Baskar V, Venkatesh J, Park SW (2015) Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. Environ Sci Pollut Res 22:17672–11768CrossRefGoogle Scholar
  25. Becker RO (1999) Silver ions in the treatment of local infections. Met Based Drugs 6:297–300CrossRefGoogle Scholar
  26. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover, New YorkGoogle Scholar
  27. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M (2016) Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci 6:755–766CrossRefGoogle Scholar
  28. Bogireddy NKR, Kumar HAK, Badal Kumar Mandal BM (2016) Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J Environ Chem Eng 4:56–64CrossRefGoogle Scholar
  29. Choi O, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588PubMedCrossRefGoogle Scholar
  30. Chowdhury IH, Ghosh S, Roy M, Naskar MK (2015) Green synthesis of water-dispersible silver nanoparticles at room temperature using green carambola (star fruit) extract. J Sol-Gel Sci Technol 73:199–207CrossRefGoogle Scholar
  31. Chung MIII, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nano Res Lett 11:40CrossRefGoogle Scholar
  32. Cicek S, Gungor AA, Adiguzel A, Nadaroglu H (2015) Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J Chem 486948:7  https://doi.org/10.1155/2015/486948Google Scholar
  33. Cinelli M, Coles SR, Nadagouda MN, Btaszczyński J, Słowiński R, Varma RS, Kirman K (2015) A green chemistry-based classification model for the synthesis of silver nanoparticles. Green Chem 17:2825–2839CrossRefGoogle Scholar
  34. Cruz D, Falé PL, Mourato A, Vaz PD, Luisa Serralheiro M, Lino ARL (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon verbena). Colloids Surf B 81:67–73CrossRefGoogle Scholar
  35. Cvjetko P, Milošić A, Domijan AM, Vrček IV, Tolić S, Štefanić PP, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28PubMedCrossRefGoogle Scholar
  36. de Aragao AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araujo MC, de Araujo Sousa Santiago J, Cardoso VS, Quaresma P, de Souza de Almeida Leite JR, da Silva DA (2016) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arabian J Chem.  https://doi.org/10.1016/j.arabjc.2016.04.014.
  37. Das J, Paul Das M, Velusamy P (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta A Mol Biomol Spectrosc 104:265–270CrossRefGoogle Scholar
  38. Deepak P, Sowmiya R, Ramkumar R, Balasubramani G, Aiswarya D, Perumal P (2017) Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848. Artif Cells Nanomed Biotechnol 45:990–998PubMedCrossRefGoogle Scholar
  39. Devanesan S, AlSalhi MS, Vishnubalaji R, Akram A, Alfuraydi AA, Alajez NM, Alfayez M, Murugan K, Sayed SRM, Nicoletti M, Benelli G (2017) Rapid biological synthesis of silver nanoparticles using plant seed extracts and their cytotoxicity on colorectal cancer cell lines. J Clust Sci 28:595–605CrossRefGoogle Scholar
  40. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang X, Van Duyne RP (2006) Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26PubMedCrossRefGoogle Scholar
  41. Dimpka CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090CrossRefGoogle Scholar
  42. Dipankar C, Murugan S (2012) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 98:112–119PubMedCrossRefGoogle Scholar
  43. Dubey SP, Lahtinen M, Sillanpaa M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071Google Scholar
  44. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A: Physiol Eng Aspect 369:27–33CrossRefGoogle Scholar
  45. Edison TNJI, Apchudan R, Lee YR (2016a) Optical sensor for dissolved ammonia through the green synthesis of silver nanoparticles by fruit extract of Terminala chebula. J Cluster Sci 27:683–690CrossRefGoogle Scholar
  46. Edison TNJI, Atchudan R, Kamal C, Lee YR (2016b) Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioproc Biosys Eng 39:1401–1408CrossRefGoogle Scholar
  47. Edison TNJI, Atchudan R, Sethuraman MG, Lee YR (2016c) Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. J Photochem Photobiol B 162:604–610PubMedCrossRefGoogle Scholar
  48. Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Proc Biochem 47:1351–1357CrossRefGoogle Scholar
  49. Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kaleena PK, Murugesan K (2015) Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J Photochem Photobiol B 151:118–124PubMedCrossRefGoogle Scholar
  50. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6CrossRefGoogle Scholar
  51. El-Sherbiny IM, El-Shibiny A, Salih E (2016) Photo-induced green synthesized and anti-microbial efficacy of poly (Ɛ- caprolactone)/ curcumin/ grape leaf extract- silver hybrid nanoparticles. J Photochem Photobiol B 160:355–363PubMedCrossRefGoogle Scholar
  52. El-Temsah YS, Jone EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefGoogle Scholar
  53. Emmanuel R, Palanisamy S, Chen SM, Chelladurai K, Padmavathy S, Saravanan M, Prakash P, Ali MA, Al-Hemaid FMA (2015) Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater Sci Eng C 56:374–379CrossRefGoogle Scholar
  54. Faedmaleki F, H Shirazi F, Salarian AA, Ahmadi Ashtiani H, Rastegar H (2014) Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res 13:235–242Google Scholar
  55. Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf B 74:123–126CrossRefGoogle Scholar
  56. Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750PubMedCrossRefGoogle Scholar
  57. Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, Alcocer-González JM, Miranda-Hernández DF, Tamez-Guerra RS, Rodríguez-Padilla C (2010) Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res 29:148–154PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–4314Google Scholar
  59. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed 7:483Google Scholar
  60. Gogoi N, Babu PJ, Mahanta C, Bora U (2015) Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbor-tristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater Sci Eng C Mater Biol Appl 46:463–469PubMedCrossRefGoogle Scholar
  61. Gopinath K, Devi NP, Govindarajan M, Bhakyaraj K, Kumaraguru S, Arumugama A, Alharbi NS, Kadaikunnan S, Benelli G (2017) One-Pot green synthesis of silver nanoparticles using the orchid leaf extracts of Anoectochilus elatus: growth inhibition activity on seven microbial pathogens. J Clust Sci 28:1541–1550CrossRefGoogle Scholar
  62. Gopinath V, Mubarak Ali D, Priyadarshini S, Meera Priyadharsshini N, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Coll Surf B Biointerf 96:69–74CrossRefGoogle Scholar
  63. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Benelli G (2016a) Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Exp Parasitol 161:40–47PubMedCrossRefGoogle Scholar
  64. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Mehlhorn H, Barnard DR, Benell G (2016b) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115:723–733PubMedCrossRefGoogle Scholar
  65. Guo D, Zhao Y, Zhang Y, Wang Q, Huang Z, Ding Q, Guo Z, Zhou X, Zhu L, Gu N (2014) The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol 10:669–678PubMedCrossRefGoogle Scholar
  66. Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Ma W, Wu J, Zhang X, Zhou X, Zhang Y, Zhao Y, Gu N (2013) Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34:7884–7894PubMedCrossRefGoogle Scholar
  67. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH (2013a) Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int 2013:535796–535805PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013b) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413Google Scholar
  69. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y, Li D, Huang H, Zhang K, Zheng X (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nano Res Lett 11:300CrossRefGoogle Scholar
  70. Huang T, Sui M, Yan X, Zhang X, Yuan Z (2016) Anti-algae efficacy of silver nanoparticles to Microcystis aeruginosa: influence of NOM, divalent cations, and pH. Coll Surf A: Physicochem Eng Aspect 509:492–503CrossRefGoogle Scholar
  71. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479Google Scholar
  72. Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  73. Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229CrossRefGoogle Scholar
  74. Husen A, Siddiqi KS (2014c) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28CrossRefGoogle Scholar
  75. Ibrahim HMM (2016) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275CrossRefGoogle Scholar
  76. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  77. Jacob SJP, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Coll Surf B: Biointerf 91:212–214CrossRefGoogle Scholar
  78. Jadhav K, Dhamecha D, Bhattacharya D, Patil M (2016) Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol B 155:109–115PubMedCrossRefGoogle Scholar
  79. Jadhav K, Dhamecha D, Dalvi B, Patil M (2015) Green synthesis of silver nanoparticles using Salacia chinensis: characterization and its antibacterial activity. Particul Sci Technol 33:445–455CrossRefGoogle Scholar
  80. Jeyaraj M, Rajesh M, Arun R, Mubarak Ali D, Sathishkumar G, Sivanandhan G, Kapildev G, Manickavasagam M, Premkumar K, Thajuddin N, Ganapathi A (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Coll Surf B: Biointerf 102:708–717CrossRefGoogle Scholar
  81. Johal MS (2011) Understanding nanomaterials. CRC Press, Boca RatonGoogle Scholar
  82. Kamala-Kannan S, Manoharan K, Thiyagarajan P, Govarthanan M, Kim J (2016) Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial, splenocyte cytotoxic potentials. Res Chem Intermediat 42:3095–3103CrossRefGoogle Scholar
  83. Kasthuri J, Kathiravan K, Rajendiran N (2009a) Phyllanthin assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085CrossRefGoogle Scholar
  84. Kasthuri J, Veerapandian S, Rajendiran N (2009b) Biological and synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 68:55–60PubMedCrossRefGoogle Scholar
  85. Karatoprak GS, Aydin G, Altinsoy B, Altinkaynak C, Kos M, Ocsoy I (2017) The effect of Pelargonium endlicherianum fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzy Micro Technolo 97:21–26CrossRefGoogle Scholar
  86. Karthik R, Hou Y, Chen S, Elangovan A, Ganesan M (2016) Eco-friendly synthesis of Ag-NPs using Cerasus serrulata plant extract – Its catalytic, electrochemical reduction of 4-NPh and antibacterial activity. J Ind Eng Chem 37:330–339CrossRefGoogle Scholar
  87. Kathiravan V, Ravi S, Kumar SA (2014) Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectro Acta Part A: Mol Biomole Spectro 130:116–121CrossRefGoogle Scholar
  88. Khan M, Khan M, Adil SF, Tahir MN, Tremel W, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH (2013) Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int J Nanomed 8:1507–1516Google Scholar
  89. Kim DY, Saratale RG, Shinde S, Syed A, Ameen F, Ghodakea G (2018) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Produc 172:2910–2918CrossRefGoogle Scholar
  90. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–1084PubMedCrossRefGoogle Scholar
  91. Knoll B, Keilmann F (1999) Near-field probing of vibrational absorption for chemical microscopy. Nature 399:134–137CrossRefGoogle Scholar
  92. Kokila T, Ramesh PS, Geetha D (2016) Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol Environ Saf 134:467–473PubMedCrossRefGoogle Scholar
  93. Kumar B, Smita K, Cumbal L, Debut A (2017a) Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Bio Sci 24:45–50CrossRefGoogle Scholar
  94. Kumar V, Singh DK, Mohan S, Gundampati RK, Hasan SH (2017b) Photoinduced green synthesis of silver nanoparticles using aqueous extract of Physalis angulata and its antibacterial and antioxidant activity. J Environ Chem Eng 5:744–756CrossRefGoogle Scholar
  95. Kumar V, Singh DK, Mohan S, Hasan SH (2015) Photo induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine orange. J Photoch Photobio B 55:39–50Google Scholar
  96. Kumar B, Smita K, Cumbal L, Debut A (2016) Ficus carica (Fig) Fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach. Bio Nano Sci 6:15–21Google Scholar
  97. Kwan KH, Liu X, To MK, Yeung KW, Ho C-m, Wong KK (2011) Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomed Nanotechnol Biol Med 7:497–504CrossRefGoogle Scholar
  98. Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30CrossRefGoogle Scholar
  99. Lateef A, Azeez MA, Asafa TB, Yakeen TA, Akinboro A, Oladipo LC, Azeez L, Ojo SA, Gueguim-Kana EB, Beukes LS (2016) Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial.; antioxidant and larvicidal activities. J Nanostructure Chem 6:159–169CrossRefGoogle Scholar
  100. Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23:2691–2699Google Scholar
  101. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–885CrossRefGoogle Scholar
  102. Lin L, Wang W, Huang J, Li Q, Sun D, Yang X, Wang H, He N, Wang Y (2010) Nature factory of silver nanowires: plant mediated synthesis using broth of Cassia fistula leaf. Chem Eng J 162:852–858CrossRefGoogle Scholar
  103. Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK (2010) Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. Chem Med Chem 5:468–475PubMedCrossRefGoogle Scholar
  104. Logaranjan K, Raiza AJ, Gopinath SCB, Chen Y, Pandian K (2016) Shape- and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity. Nano Res Lett 11:520–528CrossRefGoogle Scholar
  105. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924PubMedCrossRefGoogle Scholar
  106. Lokina S, Stephen A, Kaviyarasan V, Arulvasu C, Narayanan V (2014) Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Euro J Med Chem 76:256–263CrossRefGoogle Scholar
  107. Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13:253–262PubMedGoogle Scholar
  108. Lu Z, Xiao J, Wang Y, Meng M (2015) In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibres for antibacterial application. J Colloid Interf Sci 452:8–14CrossRefGoogle Scholar
  109. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444PubMedCrossRefGoogle Scholar
  110. Maddinedi SB, Mandal BK, Maddili SK (2017) Biofabrication of size controllable silver nanoparticles – A green approach. J Photoch Photobio B 167:236–241CrossRefGoogle Scholar
  111. Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA (2015) Antifungal Activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 57:165–167PubMedPubMedCentralCrossRefGoogle Scholar
  112. Manikandan R, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM, Basu MJ, Perumal M, Palanisamy S, Munusamy A (2015) Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectro Acta Part A Mol Biomol Spectro 138:120–129CrossRefGoogle Scholar
  113. Maria BS, Devadiga A, Kodialbail VS, Saidutta MB (2015) Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl Nanosci 5:755–762CrossRefGoogle Scholar
  114. Mata R, Nakkala JR, Sadras SR (2015) Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater Sci Eng C 51:216–225CrossRefGoogle Scholar
  115. Mattea F, Vedelago J, Malano F, Gomez C, Strumia MC, Valent M (2017) Silver nanoparticles in X-ray biomedical applications. Rad Phy Chem 130:442–450CrossRefGoogle Scholar
  116. Mehmood A, Murtaza G, Bhatti TM, Kausar R (2017) Phyto-mediated synthesis of silver nanoparticles from Melia azedarach L. leaf extract: characterization and antibacterial activity. Arabian J Chem 10:3048–3053CrossRefGoogle Scholar
  117. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356PubMedCrossRefGoogle Scholar
  118. Mohan S, Oluwafemi OS, Songca SP, Jayachandran VP, Rouxel D, Joubert O, Kalarikkal N, Thomas S (2016) Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles. J Mol Liq 213:75–81CrossRefGoogle Scholar
  119. Mohapatra B, Kuriakose S, Mohapatra S (2015) Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract. J Alloy Compd 637:119–126CrossRefGoogle Scholar
  120. Muniyappan N, Nagarajan NS (2014) Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Proc Biochem 49:1054–1061CrossRefGoogle Scholar
  121. Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang J, Wang L, Nicoletti M, Benelli G (2015) Aristolochia indica green synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi. Res Vet Sci 102:127–135PubMedCrossRefPubMedCentralGoogle Scholar
  122. Muthukumaran U, Govindarajan M, Rajeswary M (2015) Green synthesis of silver nanoparticles from Cassia roxburghii – a most potent power for mosquito control. Parasitol Res 114:4385–4395PubMedCrossRefGoogle Scholar
  123. Nalavothula R, Alwala J, Nagati VB, Manthurpadigya PR (2015) Biosynthesis of silver nanoparticles using Impatiens balsamina leaf extracts and its characterization and cytotoxic studies using human cell lines. Inter J Chem Tech Res 7:2460–2468Google Scholar
  124. Palanisamy S, Rajasekar P, Vijayaprasath G, Ravi R, Manikandan R, Prabhu MN (2017) A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an in vitro analysis. Mater Lett 189:196–200CrossRefGoogle Scholar
  125. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115:997–1013PubMedCrossRefGoogle Scholar
  126. Parveen M, Ahmad F, Malla AM, Azaz S (2016) Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay. Appl Nanosci 6:267–276CrossRefGoogle Scholar
  127. Paul B, Bhuyan B, Purkayastha DD, Dhar SS (2016) Photoctalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J Photochem Photobiol B 154:1–7PubMedCrossRefGoogle Scholar
  128. Phillip D (2009) Biosynthesis of Ag, Au and Au-Ag nanoparticles using edible mushrooms extracts. Spectrochim Acta Part A 73:374–381CrossRefGoogle Scholar
  129. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Coll Surf B: Biointerf 108:255–259CrossRefGoogle Scholar
  130. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Coll Surf B: Biointerf 82:152–159CrossRefGoogle Scholar
  131. Priya RS, Geetha D, Ramesh PS (2015) Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs- a comparative study. Ecotoxicol Environ Saf 134:308–318PubMedCrossRefGoogle Scholar
  132. Pugazhendhi S, Kirubha E, Palanisamy PK, Gopalakrishnan R (2015) Synthesis and characterization of silver nanoparticles from Alpinia calcarata by green approach and its applications in bactericidal and nonlinear optics. Appl Surf Sci 357:1801–1808CrossRefGoogle Scholar
  133. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956CrossRefGoogle Scholar
  134. Qian H, Zhu K, Lu H, Lavoie M, Chen S, Zhou Z, Deng Z, Chen J, Fu Z (2016) Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: new insights from proteomic and physiological analyses. Sci Tot Environ 572:1213–1221CrossRefGoogle Scholar
  135. Raghunandan D, Borgaonkar PA, Bendegumble B, Bedre MD, Bhagawanraju M, Yalagatti MS, Huh DS, Abbaraju V (2011) Microwave-assisted rapid extracellular biosynthesis of silver nanoparticles using Carom seed (Trachyspermum copticum) extract and in vitro studies. Am J Anal Chem 2:475–483CrossRefGoogle Scholar
  136. Raja S, Ramesh V, Thivaharan V (2017) Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian J Chem 10:253–261CrossRefGoogle Scholar
  137. Rajan A, Vilas V, Philip D (2015) Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut. J Mol Liq 207:231–236CrossRefGoogle Scholar
  138. Ramesh PS, Kokila T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta Mol Biomol Spectrosc 142:339–343CrossRefGoogle Scholar
  139. Rao B, Tang RC (2017) Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci Nanosci Nanotechnol 8:015014CrossRefGoogle Scholar
  140. Ravichandran V, Vasanthi S, Shalini S, Shah SAA, Harish R (2016) Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mat Lett 180:264–267CrossRefGoogle Scholar
  141. Reddy NJ, Vali DN, Rani M, Rani SS (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mat Sci Eng: C 34:115–122CrossRefGoogle Scholar
  142. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  143. Roy N, Mondal S, Laskar RA, Basu S, Mandal D, Begum NA (2010) Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Colloids Surf B Biointerfaces 76:317–325PubMedCrossRefGoogle Scholar
  144. Rui M, Ma C, Tang X, Yang J, Jiang F, Pan Y, Xiang Z, Hao Y, Rui Y, Cao W, Xing B (2017) Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety. ACS Sus Chem Eng 5:6557–6567CrossRefGoogle Scholar
  145. Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, Sprando RL (2014) Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol 34:1155–1166PubMedCrossRefGoogle Scholar
  146. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197Google Scholar
  147. Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Coll Surf B Biointerf 108:80–84CrossRefGoogle Scholar
  148. Sathishkumar M, Sneha K, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101:7958–7965PubMedCrossRefGoogle Scholar
  149. Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 73:332–338PubMedCrossRefGoogle Scholar
  150. Sathyaseelan T, Subbiah M, Sivamugugan V (2015) Green synthesis of silver nano particles using marine brown Alga Lobophora variegata and its efficiency in antifungal activity. World J Pharma Res 4:2137–2145Google Scholar
  151. Sattler KD (2010) Handbook of nanophysics: Nanoparticles and quantum dots. CRC Press (Taylor and Francis Group), LondonCrossRefGoogle Scholar
  152. Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T (2011a) Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnol 9:43–50CrossRefGoogle Scholar
  153. Satyavani K, Ramanathan T, Gurudeekan S (2011b) Green synthesis of silver nanoparticles using stem dried callus extract of bitter apple (Citrullus colocynthis). Dig J Nanomater Biostruct 6:1019–1024Google Scholar
  154. Sengottaiyan A, Mythili R, Selvankumar T, Aravinthan A, Kamala-Kannan S, Manoharan K, Thiyagarajan P, Govarthanan M, Kim J (2016) Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial, splenocyte cytotoxic potentials. Res Chem Intermed 42:3095–3103CrossRefGoogle Scholar
  155. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572PubMedCrossRefPubMedCentralGoogle Scholar
  156. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943CrossRefGoogle Scholar
  157. Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233PubMedCrossRefGoogle Scholar
  158. Shivakumar M, Nagashree KL, Yallappa S, Manjappa S, Manjunath KS, Dharmaprakash MS (2017) Biosynthesis of silver nanoparticles using pre-hydrolysis liquor of Eucalyptus wood and its effective antimicrobial activity. Enzy Micro Techol 97:55–62CrossRefGoogle Scholar
  159. Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nano Res Lett 11:98CrossRefGoogle Scholar
  160. Siddiqi KS, Husen A (2016b) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nano Res Lett 11:363CrossRefGoogle Scholar
  161. Siddiqi KS, Husen A (2016c) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nano Res Lett 11:482CrossRefGoogle Scholar
  162. Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elements Med Biol 40:10–23CrossRefGoogle Scholar
  163. Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92CrossRefGoogle Scholar
  164. Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14CrossRefGoogle Scholar
  165. Siddiqi KS, Rahman A, Tajuddin HA (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nano Res Lett 13:141CrossRefGoogle Scholar
  166. Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nano Res Lett 13:231Google Scholar
  167. Siddiqi KS, Rashid M, Rahman A, Tajuddin, Husen A, Rehman S (2018d) Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomat Res 22:23Google Scholar
  168. Siddiqi KS, Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nano Res Lett 11:498CrossRefGoogle Scholar
  169. Sigamioney M, Shaik S, Govender P, Krishna SBN, Sershen (2016) African leafy vegetables as bio-factories for silver nanoparticles: a case study on Amaranthus dubius C Mart. Ex Thell S Afr J Bot 103:230–240CrossRefGoogle Scholar
  170. Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru AK (2013) Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng 36:407–415PubMedCrossRefPubMedCentralGoogle Scholar
  171. Song JY, Kim BS (2009) Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 25:808–811CrossRefGoogle Scholar
  172. Sreekanth TVM, Jung M, Eom I (2015) Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity. Appl Surf Sci 361:102–106CrossRefGoogle Scholar
  173. Sreekanth TVM, Pandurangan M, Jung M, Lee YR, Eom I (2016) Eco-friendly decoration of graphene oxide with green synthesized silver nanoparticles: cytotoxic activity. Res chem Intermediat 42:5665–5676CrossRefGoogle Scholar
  174. Srinithya B, Kumar VV, Vadivel V, Pemaiah B, Anthony SP, Muthuraman MS (2016) Synthesis of biofunctionalized AgNPs using medicinally important Sida cordifolia leaf extract for enhanced antioxidant and anticancer activities. Mater Lett 170:101–104CrossRefGoogle Scholar
  175. Sriranjani R, Srinthiya B, Vadivel V, Pemaiah B, Anthony SP, Sivasubramanian A, Muthuraman MS (2016) Silver nanoparticles synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activity. J Mol Liq 220:926–930CrossRefGoogle Scholar
  176. Suarez-Cerda J, Alonso-Nunez G, Espinoza-Gomez H, Flores-Lopez LZ (2015) Synthesis, kinetics and photocatalytic study of “ultra-small” Ag-NPs obtained by a green chemistry method using an extract of Rosa ‘Andeli’ double delight petals. J Coll Interf Sci 458:169–177CrossRefGoogle Scholar
  177. Subramanian V, Suja S (2012) Green synthesis of silver nanoparticles using Coleus amboinicus Lour, antioxidant activity and in vitro cytotoxicity against Ehrlich’s Ascite carcinoma. J Pharm Res 5:1268–1272Google Scholar
  178. Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S (2012) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47:273–279CrossRefGoogle Scholar
  179. Suman TY, Rajasree SR, Jayaseelan C, Mary R, Gayathri S, Aranganathan L, Remya RR (2016) GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity. Environ Sci Pollut Res 23:2705–2714CrossRefGoogle Scholar
  180. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu CP (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Coll Surf A Physicochem Eng Aspect 444:226–231CrossRefGoogle Scholar
  181. Sundararajan B, Mahendran G, Thamaraiselvi R, Kumari BDR (2016) Biological activities of synthesized silver nanoparticles from Cardiospermum halicacabum L. Bull Mater Sci 39:423–431CrossRefGoogle Scholar
  182. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015) Synthesis and characterization of silver nano particles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta Part A Mol Biomol Spectrosc 151:939–944CrossRefGoogle Scholar
  183. Tao A, Sinsermsuksaku P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering segnetures. Angew Chem Int Ed 45:4597–2601CrossRefGoogle Scholar
  184. Tahir K, Nazir S, Li B, Khan AU, Khan ZUH, Ahmad A, Khan FU (2015) An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Separ Purifi Technol 150:316–324CrossRefGoogle Scholar
  185. Tareq FK, Fayzunnesa M, Kabir MS (2017) Antimicrobial activity of plant-median synthesized silver nanoparticles against food and agricultural pathogens. Microb Pathogen 109:228–232CrossRefGoogle Scholar
  186. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309PubMedCrossRefPubMedCentralGoogle Scholar
  187. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136PubMedCrossRefGoogle Scholar
  188. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246CrossRefGoogle Scholar
  189. Upadhyay LSB, Verma M (2014) Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization. Bioprocess Biosyst Eng 37:2139–2148PubMedCrossRefGoogle Scholar
  190. Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C 31:1723–1728CrossRefGoogle Scholar
  191. Varghese A, Anandhi P, Arunadevi R, Boovisha A, Sounthari P, Saranya J, Parameswari K, Chitra S (2015) Satin Leaf (Chrysophyllum oliviforme) extract mediated green synthesis of silver nanoparticles: antioxidant and anticancer activities. JPSR 7:266–273Google Scholar
  192. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120CrossRefGoogle Scholar
  193. Verma DK, Hasan SH, Banik RM (2016) Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J Photochem Photobiol B 155:51–59PubMedCrossRefGoogle Scholar
  194. Vidhu VK, Philip D (2014) Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectro Acta Part A: Mol Biomol Spect 117:102–108CrossRefGoogle Scholar
  195. Vinković T, Novák O, Strnad M, Goessler W, Jurašin DD, Parađiković N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18PubMedCrossRefGoogle Scholar
  196. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012) Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47:2405–2410CrossRefGoogle Scholar
  197. Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601PubMedCrossRefGoogle Scholar
  198. Xiang DX, Chen Q, Pang L, Zheng CL (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods 178:137–142PubMedCrossRefGoogle Scholar
  199. Yakout SM, Mostafa AA (2015) A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity. Int J Clin Exp Med 8:3538–3544PubMedPubMedCentralGoogle Scholar
  200. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7:e47674PubMedPubMedCentralCrossRefGoogle Scholar
  201. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367PubMedCrossRefGoogle Scholar
  202. Zhang W, Qiao X, Chen J (2007) Synthesis of silver nanoparticles – effects of concerned parameters in water/oil microemulsion. Mat Sci Eng B 142:1–15CrossRefGoogle Scholar
  203. Zia F, Ghafoor N, Iqbal M, Mehboob S (2016) Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Appl Nanosci 6:1023–1029CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vinod Kumar Mishra
    • 1
  • Azamal Husen
    • 2
  • Qazi Inamur Rahman
    • 3
  • Muhammad Iqbal
    • 4
  • Sayed Sartaj Sohrab
    • 5
  • Mansur Osman Yassin
    • 6
  1. 1.Department of BiotechnologyDoon P.G. Paramedical CollegeDehra DunIndia
  2. 2.Department of ChemistryCollege of Natural and Computational Sciences, University of GondarGondarEthiopia
  3. 3.Department of BiologyCollege of Natural and Computational Sciences, University of GondarGondarEthiopia
  4. 4.Department of Botany, Faculty of ScienceJamia Hamdard (Deemed University)New DelhiIndia
  5. 5.Special Infectious Agents UnitKing Fahd Medical Research Center (KFMRC), King Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  6. 6.Department of SurgeryCollege of Medicine and Health Sciences, University of GondarGondarEthiopia

Personalised recommendations