Plant-Mediated Fabrication of Gold Nanoparticles and Their Applications

  • Azamal Husen
  • Qazi Inamur Rahman
  • Muhammad Iqbal
  • Mansur Osman Yassin
  • Rakesh Kumar Bachheti


In the recent years, gold nanoparticles (NPs) have been extensively studied for their widespread uses, particularly in biology, medicine, and agriculture. Of the physical, chemical, and biological methods of their fabrication, the last ones are simple, cost-effective, and eco-friendly and may be easily scaled up for high yields and/or production. Plants and their extracts contain metabolites such as amines, amino acids, aldehydes, ketones, carboxylic acids, phenols, proteins, flavonoids, saponins, steroids, alkaloids, and tannins and different nutritional compounds that have been frequently and successfully used in green synthesis of gold NPs. Many phytochemicals are used as the reducing agents for producing NPs from metal salts. Their production rate and size are controlled by monitoring the concentration, pH, and temperature of plant extracts and that of the gold salt. The plant-mediated synthesized NPs have done better in various applications. This chapter provides an overview of plant-mediated fabrication of gold NPs; their characterization by UV-vis spectroscopy, thermogravimetric analysis, X-ray diffractometry, and SEM/TEM, among others; and their application in various cutting-edge areas.


Gold nanoparticles Plant extract Green synthesis Phytochemicals 


  1. Abel EE, Poonga PRJ, Panicker SG (2016) Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl Nanosci 6:121–129CrossRefGoogle Scholar
  2. Ali MD, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 85:360–365CrossRefGoogle Scholar
  3. Anagnostopoulou MA, Kefalas P, Papageorgiou VP, Assimopoulou AN, Boskou D (2006) Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). J Food Chem 94:19–25CrossRefGoogle Scholar
  4. Anand K, Gengan RM, Phulukdaree A, Chuturgoon A (2015) Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 21:1105–1111CrossRefGoogle Scholar
  5. Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35:82–88CrossRefGoogle Scholar
  6. Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia Catappa. E-J Chem 7:1334–1339CrossRefGoogle Scholar
  7. Annamalai A, Christina VLP, Sudha D, Kalpana M, Lakshmi PTV (2013) Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B: Biointerfaces 108:60–65PubMedCrossRefPubMedCentralGoogle Scholar
  8. Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nano Res 6:377–382CrossRefGoogle Scholar
  9. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310CrossRefGoogle Scholar
  10. Ashokkumar T, Arockiaraj J, Vijayaraghavan K (2016) Biosynthesis of gold nanoparticles using green roof species Portulaca grandiflora and their cytotoxic effects against C6 glioma human cancer cells. Environ Prog Sustain Energy 35:1732–1740CrossRefGoogle Scholar
  11. Babu PJ, Saranya S, Sharma P, Tamuli R, Bora U (2012) Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone–gelatin composites. Front Mater Sci 6:236–249CrossRefGoogle Scholar
  12. Balalakshmi C, Gopinath K, Govindarajan M, Lokesh R, Arumugam A, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B 173:598–605PubMedCrossRefPubMedCentralGoogle Scholar
  13. Balasubramani G, Ramkumara R, Krishnaveni N, Pazhanimuthu A, Natarajan T, Sowmiya R, Perumal P (2015) Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. & Arn. J Trace Elem Med Biol 30:83–89PubMedCrossRefPubMedCentralGoogle Scholar
  14. Balasubramani G, Ramkumar R, Raja RK, Aiswarya D, Rajthilak C, Perumal P (2017) Albizia amara Roxb. Mediated gold nanoparticles and evaluation of their antioxidant, antibacterial and cytotoxic properties. J Clust Sci 28:259–275CrossRefGoogle Scholar
  15. Bali R, Harris AT (2010) Biogenic synthesis of Au nanoparticles using vascular plants. Ind Eng Chem Res 49:12762–12772CrossRefGoogle Scholar
  16. Bangs LB (1996) New developments in particle-based immunoassays: introduction. Pure Appl Chem 68:1873–1879CrossRefGoogle Scholar
  17. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950PubMedCrossRefPubMedCentralGoogle Scholar
  18. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857PubMedCrossRefPubMedCentralGoogle Scholar
  19. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces 71:113–118PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24:1415–1426PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bindhani BK, Panigrahi AK (2014) Green synthesis and characterization of gold nanoparticles using leaf extracts of Withania somnifera (Linn.) (Ashwagandha). Int J Mat Sci Appl 3:279–284Google Scholar
  22. Borase HP, Patil CD, Suryawanshi RK, Koli SH, Mohite BV, Benelli G, Patil SV (2017) Mechanistic approach for fabrication of gold nanoparticles by Nitzschia diatom and their antibacterial activity. Bioprocess Biosyst Eng 40:1437–1446PubMedCrossRefPubMedCentralGoogle Scholar
  23. Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27:085103–085116PubMedCrossRefPubMedCentralGoogle Scholar
  24. Burns C, Spendel WU, Puckett S, Pacey GE (2006) Solution ionic strength effect on gold nanoparticle solution color transition. Talanta 69:873–876PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carocho M, Ferreira ICFR (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25PubMedCrossRefPubMedCentralGoogle Scholar
  27. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun 7:696–697CrossRefGoogle Scholar
  28. Castro L, Blazquez ML, Munoz JA, Gonzalez F, Garcia-Balboa C, Ballester A (2011) Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem 46:1076–1082CrossRefGoogle Scholar
  29. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583PubMedCrossRefGoogle Scholar
  30. Chandran K, Song S, Yun SII (2014) Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arab J Chem.
  31. Claus P, Brückner A, Mohr C, Hofmeister H (2000) Supported gold nanoparticles from quantum dot to mesoscopic size scale: effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J Am Chem Soc 122:11430–11439CrossRefGoogle Scholar
  32. Costa P, Amaro A, Botelho V, Inacio J, Baptista PV (2010) Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clin Microbiol Infect 16:1464–1469PubMedCrossRefPubMedCentralGoogle Scholar
  33. Daizy P (2009) Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 73:650–653CrossRefGoogle Scholar
  34. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34:615–619PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dasary SS, Singh AK, Senapati D, Yu H, Ray PC (2009) Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 131:13806–13812PubMedCrossRefGoogle Scholar
  36. Dash SS, Bag BG (2014) Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl Nanosci 4:55–59CrossRefGoogle Scholar
  37. Dharanivasan G, Riyaz SUM, Jesse DMJ, Muthuramalingam TR, Rajendran G, Kathiravan K (2016) DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 6:11773–11785CrossRefGoogle Scholar
  38. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ding X, Kong L, Wang J, Fang F, Li D, Liu J (2013) Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl Mater Interfaces 5:7072–7078PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther 22:1075–1083PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dubey SP, Lahtinen M, Särkkä H, Sillanpää M (2010a) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B Biointerfaces 80:26–33PubMedCrossRefPubMedCentralGoogle Scholar
  42. Dubey SP, Lahtinen M, Sillanpaa M (2010b) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071CrossRefGoogle Scholar
  43. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369:27–33CrossRefGoogle Scholar
  44. Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74:123–126CrossRefGoogle Scholar
  45. Fayaz AM, Girilal M, Venkatesan R, Kalaichelvan PT (2011) Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf B Biointerfaces 88:287–291PubMedCrossRefGoogle Scholar
  46. Fraceto LF, Grillo R, de Medeiros DGA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20–25CrossRefGoogle Scholar
  47. Francis S, Joseph S, Koshy EP, Mathew B (2017a) Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ Sci Pollut Res 24:17347–17357CrossRefGoogle Scholar
  48. Francis S, Joseph S, Koshy EP, Mathew B (2017b) Synthesis and characterization of multifunctional gold and silver nanoparticles using leaf extract of Naregamia alata and their applications to catalysis and control of mastitis. New J Chem 41:14288–14298CrossRefGoogle Scholar
  49. Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacamanero S, Jose-Yacaman M (1999) Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1:397–404CrossRefGoogle Scholar
  50. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401CrossRefGoogle Scholar
  51. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361CrossRefGoogle Scholar
  52. Geetha R, Kumar TA, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G (2013) Green synthesis of gold nanoparticles and their anticancer activityCancer. Nano 4:91–98Google Scholar
  53. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  54. Ghodake GS, Deshpande NG, Lee YP, Jin ES (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B Biointerfaces 75:584–589PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ghosh S, Patil S, Ahire M, Kitture R, Gurav DD, Jabgunde AM, Kale S, Pardesi K, Shinde V, Bellare J, Dhavale DD, Chopade BA (2012) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17CrossRefGoogle Scholar
  57. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129:11653–11661PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gonnelli C, Cacioppo F, Cristiana G, Capozzoli L, Salvatici C, Salvatici MC, Colzi I, Bubba MD, Ancillotti C, Ristori S (2015) Cucurbita pepo L. extracts as a versatile hydrotropic source for the synthesis of gold nanoparticles with different shapes. Green Chem Lett Rev 8:39–47CrossRefGoogle Scholar
  59. González-Ballesteros N, Prado-López S, Rodríguez-González JB, Lastra M, Rodríguez-Argüelles MC (2017) Green synthesis of gold nanoparticles using brown algae Cystoseirabaccata: its activity in colon cancer cells. Colloids Surf B Biointerfaces 153:190–198PubMedCrossRefPubMedCentralGoogle Scholar
  60. González-Solís JL, Luévano-Colmenero GH, Vargas-Mancilla J (2013) Surface enhanced Raman spectroscopy in breast cancer cells. Laser Ther 22:37–42PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gopinath K, Venkatesha KS, Ilangovana R, Sankaranarayanan K, Arumugama A (2013) Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna for the enhanced mitotic cell division and pollen pollen germination activity. Ind Crop Prod 50:737–742CrossRefGoogle Scholar
  62. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna for the enhanced seed germination activity of Gloriosa superb. J Nanostruct Chem 4:115–125CrossRefGoogle Scholar
  63. Gopinath V, Priyadarshini S, Ali MD, Loke MF, Thajuddin N, Alharbi NS, Yadavalli T, Alagiri M, Vadivelu J (2019) Anti-helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: multifaceted application. Arab J Chem 12:33–40Google Scholar
  64. Grisel R, Weststrate KJ, Gluhoi A, Nieuwenhuys BE (2002) Catalysis by gold nanoparticles. Gold Bull 35:39–45CrossRefGoogle Scholar
  65. Grubisha DS, Lipert RJ, Park H-Y, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943PubMedCrossRefPubMedCentralGoogle Scholar
  66. Gunjan B, Zaidi MGH, Sandeep A (2014) Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol 2:133–138Google Scholar
  67. Gupta R, Kulkarni GU (2011) Removal of organic compounds from water by using a gold nanoparticle-poly(dimethylsiloxane) nanocomposite foam. ChemSusChem 4:737–743PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gupta VK, Jain R, Saleh TA, Nayak A, Malathi S, Agarwal S (2011) Equilibirum and thermodynamic studies on the removal and recovery of Safranine-T Dye from industrial effluents. Sep Sci Technol 46:839–846CrossRefGoogle Scholar
  69. Han A, Dufva M, Belleville E, Christensen CB (2003) Detection of analyte binding to microarrays using gold nanoparticle labels and a desktop scanner. Lab Chip 3:329–332PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2006) Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity. Electrochim Acta 52:1662–1669. (as Assessed on 3 December, 2017)
  71. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28CrossRefGoogle Scholar
  72. Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2006) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immune targeted gold nanoparticles. Photochem Photobiol 82:412–417PubMedCrossRefPubMedCentralGoogle Scholar
  73. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong CC (2007a) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115CrossRefGoogle Scholar
  74. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2007b) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597PubMedCrossRefPubMedCentralGoogle Scholar
  75. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyper thermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2:125–132CrossRefGoogle Scholar
  76. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479Google Scholar
  77. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hutchings GJ, Haruta M (2005) A golden age of catalysis: a perspective. Appl Catal A 291:2–5CrossRefGoogle Scholar
  79. Iqbal M, Ahmad A, Siddiqi TO (2011) Characterization of controversial plant drugs and effect of changing environment on active ingredients. In: Ahmad A, Siddiqi TO, Iqbal M (eds) Medicinal plants in changing environment. Capital Publishing Company, New Delhi, pp 1–10Google Scholar
  80. Iqbal M, Ahmad A, Ansari MKA, Qureshi MI, Aref IM, Khan PR, Hegazy SS, El-Atta H, Husen A, Hakeem KR (2015) Improving the phytoextraction capacity of plants to scavenge metal(loid)-contaminated sites. Environ Rev 23:1–22CrossRefGoogle Scholar
  81. Iqbal M, Parveen R, Parveen A, Parveen B, Aref IM (2018) Establishing the botanical identity of plant drugs based on their active ingredients under diverse growth conditions. J Environ Biol 39(1):123–136CrossRefGoogle Scholar
  82. Islam NU, Jalil K, Shahid M, Muhammad N, Rauf A (2015a) Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arab J Chem.
  83. Islam NU, Jalil K, Shahid M, Rauf A, Muhammad N, Khan A, Raza Shah MR, Khan MA (2015b) Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J Chem.
  84. Jain A, Sinilal B, Starnes DL, Sanagala R, Krishnamurthy S, Sahi SV (2014) Role of Fe-responsive genes in bioreduction and transport of ionic gold to roots of Arabidopsis thaliana during synthesis of gold nanoparticles. Plant Physiol Biochem 84:189–196PubMedCrossRefPubMedCentralGoogle Scholar
  85. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  86. Joseph S, Mathew B (2015a) Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim Acta A Mol Biomol Spectrosc 136:1371–1379PubMedCrossRefPubMedCentralGoogle Scholar
  87. Joseph S, Mathew B (2015b) Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204:184–191CrossRefGoogle Scholar
  88. Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085CrossRefGoogle Scholar
  90. Khalil MMH, Ismail EH, Magdoub FE (2012) Biosynthesis of Au nanoparticles using olive leaf extract. Arab J Chem 5:431–437CrossRefGoogle Scholar
  91. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56:150–154CrossRefGoogle Scholar
  92. Koo Y, Lukianova-Hleb EY, Pan J, Thompson SM, Lapotko DO, Braam J (2016) In planta response of Arabidopsis to photothermal impact mediated by gold nanoparticles. Small 12:623–630PubMedCrossRefPubMedCentralGoogle Scholar
  93. Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep 4:42–49CrossRefGoogle Scholar
  94. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  95. Kumar KP, Paul W, Sharma CP (2011) Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem 46:2007–2013CrossRefGoogle Scholar
  96. Kumar KM, Mandal BK, Sinha M, Krishnakumar V (2012) Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 86:490–494PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461–462:462–468PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kundu S, Panigrahi S, Praharaj S, Basu S, Ghosh SK, Pal A, Pal T (2007) Anisotropic growth of gold clusters to gold nanocubes under UV irradiation. Nanotechnology 18:075712PubMedCrossRefPubMedCentralGoogle Scholar
  99. Kundu S, Lau S, Liang H (2009) Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J Phys Chem C 113:5150–5156CrossRefGoogle Scholar
  100. Kuppusamy P, Yusoff MM, Ichwan SJA, Parine NR, Maniam GP, Govindan N (2015) Commelina nudiflora L. edible weed as a novel source for gold nanoparticles synthesis and studies on different physical–chemical and biological properties. J Ind Eng Chem 27:59–67CrossRefGoogle Scholar
  101. Leu JG, Chen SA, Chen HM, Wu WM, Hung CF, Yao YD, Tu CS, Liang YJ (2012) The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine 8:767–775PubMedCrossRefPubMedCentralGoogle Scholar
  102. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:10682–10686PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lim SH, Ahn EY, Park Y (2016) Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaris water extract. Nanoscale Res Lett 11:474–484PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lin L, Wang W, Huang J, Li Q, Sun D, Yang X, Wang H, He N, Wang Y (2010) Nature factory of silver nanowires: plant mediated synthesis using broth of Cassia fistula leaf. Chem Eng J 162:852–858CrossRefGoogle Scholar
  105. Lisha KP, Pradeep T (2009) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44:697–705PubMedCrossRefPubMedCentralGoogle Scholar
  106. Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immuno nano shells for targeted photothermal ablation of tumor cells. Int J Nanomedicine 1:149–154PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353:433–444PubMedCrossRefGoogle Scholar
  109. Luo XL, Xu JJ, Du Y, Chen HY (2004) A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem 334:284–289PubMedCrossRefPubMedCentralGoogle Scholar
  110. Majumdar R, Bag BG, Maity N (2013) Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity. Int Nano Lett 3:53–58CrossRefGoogle Scholar
  111. Manjari G, Saran S, Arun T, Devipriya SP, Rao AVB (2017) Facile Aglaia elaeagnoidea mediated synthesis of silver and gold nanoparticles: antioxidant and catalysis properties. J Clust Sci 28:2041–2056CrossRefGoogle Scholar
  112. Manju S, Malaikozhundan B, Vijayakumar S, Shanthi S, Jaishabanu A, Ekambaram P, Vaseeharan B (2016) Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog 91:129–135PubMedCrossRefPubMedCentralGoogle Scholar
  113. Medhe S, Bansal P, Srivastava MM (2014) Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Appl Nanosci 4:153–161CrossRefGoogle Scholar
  114. Meyre ME, Tréguer-Delapierre M, Faure C (2008) Radiation induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis. Langmuir 24:4421–4425PubMedCrossRefPubMedCentralGoogle Scholar
  115. Mishra AN, Bhadauria S, Gaur MS, Pasricha R, Kushwah BS (2010) Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. Int J Green Nanotechnol Phys Chem 1:118–124CrossRefGoogle Scholar
  116. Mishra P, Ray S, Sinha S, Das B, Khan MI, Behera SK, Il Yun S, Tripathy SK, Mishra A (2016) Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J 105:264–272CrossRefGoogle Scholar
  117. Moaveni P, Karimi K, Valojerdi MZ (2011) The nanoparticles in plants. J Nano Struct Chem 2:59–78Google Scholar
  118. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759CrossRefGoogle Scholar
  119. Mollick MMR, Bhowmick B, Mondal D, Maity D, Rana D, Dash SK, Chattopadhyay S, Roy S, Sarkar J, Acharya K, Chakrabortye M, Chattopadhyay D (2014) Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Adv 4:37838–37849CrossRefGoogle Scholar
  120. Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra C, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE, Mukhopadhyay D (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5:4CrossRefGoogle Scholar
  121. Nair AS, Tom RT, Pradeep T (2003) Detection and extraction of endosulfan by metal nanoparticles. J Environ Monit 5:363–365PubMedCrossRefPubMedCentralGoogle Scholar
  122. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590CrossRefGoogle Scholar
  123. Narayanan KB, Sakthivel N (2010a) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  124. Narayanan KD, Sakthivel N (2010b) Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 61:1232–1238CrossRefGoogle Scholar
  125. Nellore J, Paulineb PC, Amarnathc K (2012) Biogenic synthesis by Sphearanthus Amaranthoids; towards the efficient production of the biocompatible gold nanoparticles. Dig J Nanomater Biostruct 7:123–133Google Scholar
  126. Neng J, Harpster MH, Zhang H, Mecham JO, Wilson WC, Johnson PA (2010) A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens Bioelectron 26:1009–1015PubMedCrossRefPubMedCentralGoogle Scholar
  127. Noruzi M, Zare D, Khoshnevisan K, Davoodi D (2011) Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 79:1461–1465PubMedCrossRefPubMedCentralGoogle Scholar
  128. Nun YS, Jaroenrama W, Sriurairatana S, Suebsing R, Kiatpathomchai W (2013) Visual detection of white spot syndrome virus using DNA-functionalized gold nanoparticles as probes combined with loop-mediated isothermal amplification. Mol Cell Probes 27:71–79CrossRefGoogle Scholar
  129. Okitsu K, Mizukoshi Y, Yamamoto TA, Maeda Y, Nagata Y (2007) Sonochemical synthesis of gold nanoparticles on chitosan. Mater Lett 61:3429–3431CrossRefGoogle Scholar
  130. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal Chem 77:3261–3266PubMedCrossRefPubMedCentralGoogle Scholar
  131. Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZA (2017) Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol 101:3551–3565PubMedCrossRefPubMedCentralGoogle Scholar
  132. Pandey S, Oza G, Mewada A, Madhuri S (2012) Green synthesis of highly stable gold nanoparticles using Momordica charantia as Nano fabricator. Arch Appl Sci Res 4:1135–1141Google Scholar
  133. Pasca RD, Mocanu A, Cobzac SC, Petean I, Horovitz O, Tomoaia-Cotisel M (2014) Biogenic syntheses of gold nanoparticles using plant extracts. Part Sci Technol 32:131–137CrossRefGoogle Scholar
  134. Peleg G, Lewis A, Linial M, Loew LM (1999) Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc Natl Acad Sci U S A 96:6700–6704PubMedPubMedCentralCrossRefGoogle Scholar
  135. Phillip D (2009) Biosynthesis of Ag, Au and Au-Ag nanoparticles using edible mushrooms extracts. Spectrochim Acta A Mol Biomol Spectrosc 73:374–381CrossRefGoogle Scholar
  136. Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectro Acta A Mol Biomol Spectrosc 77:807–810CrossRefGoogle Scholar
  137. Philip D, Unnib C, Aromala SA, Vidhua VK (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904PubMedCrossRefPubMedCentralGoogle Scholar
  138. Piruthiviraj P, Margret A, Krishnamurthy PP (2016) Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi. Appl Nanosci 6:467–473CrossRefGoogle Scholar
  139. Pradeep T, Anshup A (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478CrossRefGoogle Scholar
  140. Qian XM, Nie S (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920PubMedCrossRefPubMedCentralGoogle Scholar
  141. Ramachandran R, Krishnaraj C, Sivakumar AS, Prasannakumar P, Kumar VKA, Shim KS, Song CG, Yun SII (2017) Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater Sci Eng C 73:674–683CrossRefGoogle Scholar
  142. Ramakrishna M, Babu DR, Gengan RM, Chandra S, Rao GN (2016) Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostructure Chem 6:1–13CrossRefGoogle Scholar
  143. Rana S, Bajaj A, Mout R, Rotello VM (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64:200–216PubMedCrossRefPubMedCentralGoogle Scholar
  144. Rao KJ, Paria S (2014) Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and their application for thiamine detection. RSC Adv 4:28645–28652CrossRefGoogle Scholar
  145. Raouf NA, Al-Enazib NM, Ibraheem IBM (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039Google Scholar
  146. Reddy V, Torati RS, Oh S, Kim C (2012) Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi gaertn. Fruit pericarp and their catalytic application for the reduction of p-nitroaniline. Ind Eng Chem Res 52:556–564CrossRefGoogle Scholar
  147. Sadeghi B, Mohammadzadeh M, Babakhani B (2015) Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. J Photochem Photobiol B 148:101–106PubMedCrossRefPubMedCentralGoogle Scholar
  148. Sathish KG, Jha PK, Vignesh V, Rajkuberan C, Jeyaraj M, Selvakumar M, Jha R, Sivaramakrishnan S (2016) Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J Mol Liq 215:229–236CrossRefGoogle Scholar
  149. Sett A, Gadewar M, Sharma P, Deka M, Bora U (2016) Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Adv Nat Sci Nanosci Nanotechnol 7:025005–025013CrossRefGoogle Scholar
  150. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943CrossRefGoogle Scholar
  151. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  152. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold Nanoprisms. Nat Mater 3:482–488PubMedCrossRefGoogle Scholar
  153. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572CrossRefGoogle Scholar
  154. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Tarasankar P (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142PubMedPubMedCentralCrossRefGoogle Scholar
  155. Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400PubMedPubMedCentralCrossRefGoogle Scholar
  156. Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23PubMedCrossRefGoogle Scholar
  157. Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92PubMedPubMedCentralCrossRefGoogle Scholar
  158. Siddiqi KS, Rahman A, Tajuddin HA (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498PubMedPubMedCentralCrossRefGoogle Scholar
  159. Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14CrossRefGoogle Scholar
  160. Siddiqi KS, Rahman A, Tajuddin, Husen A (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141PubMedPubMedCentralCrossRefGoogle Scholar
  161. Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 13:231PubMedPubMedCentralCrossRefGoogle Scholar
  162. Siddiqi KS, Rashid M, Rahman A, Tajuddin, Husen A, Rehman S (2018d) Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomat Res 22:23Google Scholar
  163. Singh AK, Srivastava ON (2015) One-step green synthesis of gold nanoparticles using black cardamom and effect of pH on its synthesis. Nanoscale Res Lett 10:353–364PubMedCentralCrossRefGoogle Scholar
  164. Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta A Mol Biomol Spectrosc 74:735–739PubMedCrossRefPubMedCentralGoogle Scholar
  165. Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochem 44:1133–1138CrossRefGoogle Scholar
  166. Sreelakshmi C, Datta K, Yadav J, Reddy B (2011) Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J Nanosci Nanotechnol 11:6995–7000PubMedCrossRefPubMedCentralGoogle Scholar
  167. Suganthy N, Ramkumar VS, Pugazhendhi A, Benelli G, Archunan G (2018) Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res 25:10418–10433Google Scholar
  168. Suman TY, Rajasree SRR, Ramkumar R, Rajthilak C, Perumal P (2014) The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16PubMedCrossRefGoogle Scholar
  169. Suvith VS, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 118:526–532PubMedCrossRefGoogle Scholar
  170. Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal Chem 74:1624–1628PubMedCrossRefGoogle Scholar
  171. Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA (2016) Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J Cell Biochem 117:2302–2314PubMedCrossRefGoogle Scholar
  172. Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206:314–320CrossRefGoogle Scholar
  173. Upadhyay P, Hanif M, Bhaskar S (2006) Visual detection of IS6110 of Mycobacterium tuberculosis in sputum samples using a test based on colloidal gold and latex beads. Clin Microbiol Infect 12:1118–1122PubMedCrossRefPubMedCentralGoogle Scholar
  174. Vankar PS, Bajpai D (2010) Preparation of gold nanoparticles from Mirabilis jalapa flowers. Ind J Biochem Biophys 47:157–160Google Scholar
  175. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6: 1769–1780Google Scholar
  176. Velammal SP, Devi TA, Amaladhas TP (2016) Antioxidant, antimicrobial and cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago zeylanica bark. J Nanostruct Chem 6:247–260CrossRefGoogle Scholar
  177. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Gopi N, Ekambaram P, Pachaiappan R, Velusamy P, Murugan K, Benelli G, Kumar RS, Suriyanarayanamoorthy M (2017) Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb Pathog 102:173–183PubMedCrossRefPubMedCentralGoogle Scholar
  178. Vijayaraghavan K, Nalini SPK (2010) Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J 5:1098–1110PubMedCrossRefPubMedCentralGoogle Scholar
  179. Wang R, Yue L, Yu Y, Zou X, Song D, Liu K, Liu Y, Su H (2016) Gold nanoparticles modify the photophysical and photochemical properties of 6-thioguanine: preventing DNA oxidative damage. J Phys Chem C 120:14410–14415CrossRefGoogle Scholar
  180. Watters JL, Satia JA, Kupper LL, Swenberg JA, Schroeder JC, Switzer BR (2007) Associations of antioxidant nutrients and oxidative DNA damage in healthy African-American and white adults. Cancer Epidemiol Biomark Prev 16:1428–1436CrossRefGoogle Scholar
  181. Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manag 111:249–257CrossRefGoogle Scholar
  182. Yasmin A, Ramesh K, Rajeshkumar S (2014) Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Converg 1:12PubMedPubMedCentralCrossRefGoogle Scholar
  183. Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112CrossRefGoogle Scholar
  184. Zamarion VM, Timm RA, Araki K, Toma HE (2008) Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles. Inorg Chem 47:2934–2936PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zhan G, Huang J, Lin L, Lin W, Emmanuel K, Li Q (2011) Synthesis of gold nanoparticles by Cacumen Platycladi leaf extract and its simulated solution: toward the plant-mediated biosynthetic mechanism. J Nanopart Res 13:4957–4968CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Azamal Husen
    • 1
  • Qazi Inamur Rahman
    • 2
  • Muhammad Iqbal
    • 3
  • Mansur Osman Yassin
    • 4
  • Rakesh Kumar Bachheti
    • 5
  1. 1.Department of BiologyCollege of Natural and Computational Sciences, University of GondarGondarEthiopia
  2. 2.Department of ChemistryCollege of Natural and Computational Sciences, University of GondarGondarEthiopia
  3. 3.Department of Botany, Faculty of ScienceJamia Hamdard (Deemed University)New DelhiIndia
  4. 4.Department of SurgeryCollege of Medicine and Health Sciences, University of GondarGondarEthiopia
  5. 5.Department of Industrial ChemistryAddis Ababa Science and Technology UniversityAddis AbabaEthiopia

Personalised recommendations