Advertisement

Basic Chemistry and Biomedical Significance of Nanomaterials

  • Mahmoud Nasrollahzadeh
  • S. Mohammad Sajadi
  • Muhammad Iqbal
Chapter

Abstract

In view of the importance of nanosized systems in various aspects of human life, nanostructures and nanoproducts are strongly attracting the attention of researchers, planners, and investors all over the world. Specific properties of nanomaterials depend primarily on their size, structure, and shape, which are affected by several factors such as agglomeration, pH, temperature, solubility, phase transition, and surface plasmon resonance. This chapter highlights some basic chemical/biochemical characteristics of nanomaterials, which are responsible for their unique properties, and also points to the significance of these materials in areas of health and medicine with especial reference to the mode and mechanism of nanoencapsulation.

Keywords

Nanomaterials Fabrication strategies Nanomaterial properties Nanomaterial applications 

References

  1. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adachi E (2000) Three-dimensional self-assembly of gold nanocolloids in spheroids due to dialysis in the presence of sodium mercaptoacetate. Langmuir 16:6460–6469CrossRefGoogle Scholar
  3. Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D (2007) Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact 167:207–218PubMedCrossRefGoogle Scholar
  4. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432CrossRefGoogle Scholar
  5. Arivazhagan V (2013) Investigation of quantum confinement effect in pbse/znse multiple quantum well structures prepared by thermal evaporation technique. PhD thesis, Department of Physics, Karunya University, Coimbatore, IndiaGoogle Scholar
  6. Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13:214PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baeza A, Ruiz-Molina D, Vallet-Regi M (2017) Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv 14:783–796PubMedCrossRefGoogle Scholar
  8. Bagul US, Pisal VV, Solanki NV, Karnavat A (2018) Current status of solid lipid nanoparticles: a review. Mod Appl Bioequiv Bioavail 3(MS.ID.555617):001–009Google Scholar
  9. Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243PubMedPubMedCentralCrossRefGoogle Scholar
  10. Batra P, Mushtaq A, Mazumder J, Rizvi MS, Miglani R (2016) Nanoparticles and their applications in orthodontics. Adv Dent Oral Health 2:555584–555597CrossRefGoogle Scholar
  11. Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. In: Sezer AD (ed) Application of nanotechnology in drug delivery, Chapter 8, InTech, London, pp 257–310.  https://doi.org/10.5772/58422.Google Scholar
  12. Bhaumik A (2017) Porous nanomaterials for energy, environment and biomedical applications. J Mater Sci Nanomater 1:e109Google Scholar
  13. Bonner JC (2016) Nanotechnology in pulmonary disease. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer Science + Business Media, Dordrecht, pp 2880–2885CrossRefGoogle Scholar
  14. Brune H, Giovannini M, Bromann K, Kern K (1998) Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394:451–453CrossRefGoogle Scholar
  15. Campani V, Giarra S, De Rosa G (2018) Lipid-based core-shell nanoparticles: evolution and potentialities in drug delivery. Open Nano 3:5–17Google Scholar
  16. Cao G, Wang Y (2011) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, LondonCrossRefGoogle Scholar
  17. Chang J, Waclawik ER (2014) Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv 4:23505–23511CrossRefGoogle Scholar
  18. Dasan KP (2015) Nanoclay/polymer composites: recent developments and future prospects. In: Thakur V, Thakur M (eds) Eco-friendly polymer nanocomposites. Advanced structured materials, vol 75. Springer, New DelhiGoogle Scholar
  19. Date AA, Hanes J, Ensign LM (2016) Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release 240:504–526PubMedPubMedCentralCrossRefGoogle Scholar
  20. Datt A, Ndiege N, Larsen SC (2012) Development of porous nanomaterials for applications in drug delivery and imaging. In: Nanomaterials for biomedicine, ACS Symposium Series, vol 1119. American Chemical Society, Washington, D.C, pp 239–258CrossRefGoogle Scholar
  21. Du J, Chen Y, Zhang Y, Han CC, Fischer F, Schmidt M (2003) Organic/inorganic hybrid vesicles based on a reactive block copolymer. J Am Chem Soc 125:14710–14711PubMedCrossRefGoogle Scholar
  22. Ehrman SH, Friedlander SK, Zachariah MR (1999) Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame. J Mater Res 14:4551–4561CrossRefGoogle Scholar
  23. Elimelech M, Jia X, Gregory J, Williams R (1998) Particle deposition and aggregation: measurement, modelling and simulation, Colloid and Surface Engineering Series. Butterworth-Heinemann, Oxford, p 124Google Scholar
  24. El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–691PubMedCrossRefGoogle Scholar
  25. Endo Y, Sato K, Anzai J-I (2010) Preparation of avidin-containing polyelectrolyte microcapsules and their uptake and release properties. Polym Bull 66:711–720CrossRefGoogle Scholar
  26. Esmaeili A, Rahnamoun S, Sharifnia F (2013) Effect of O/W process parameters on Crataegus azarolus L. nanocapsule properties. J Nanobiotechnol 11:16–21CrossRefGoogle Scholar
  27. Esmailpour AA, Zarghami R, Mostoufi N (2015) Effect of temperature on the nanoparticles agglomerates fluidization. In: Proc. Int. Conf. modelling, simulation and applied mathematics (MSAM 2015). Atlantis Press, Tehran, pp 242–245Google Scholar
  28. Esmailpour AA, Mostoufi N, Zarghami R (2018) Effect of temperature on fluidization of hydrophilic and hydrophobic nanoparticle agglomerates. Exp Thermal Fluid Sci 96:63–74CrossRefGoogle Scholar
  29. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647CrossRefGoogle Scholar
  30. Fendler JH (2001) Colloid chemical approach to nanotechnology. Korean J Chem Eng 18:1–13CrossRefGoogle Scholar
  31. Fiandaca MS, Bankiewicz KS (2013) Micelles and liposomes: lipid nanovehicles for intracerebral drug delivery. In: Kateb B, Heiss JD (eds) The textbook of nanoneuroscience and nanoneurosurgery. CRC Press, Taylor & Francis Group, Boca Raton, pp 51–64CrossRefGoogle Scholar
  32. Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi D-K (2018) Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 13:1569–1583PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gavasane AJ, Pawar HA (2014) Synthetic biodegradable polymers used in controlled drug delivery system: an overview. Clin Pharmacol Biopharm 3:121CrossRefGoogle Scholar
  34. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–2841PubMedCrossRefGoogle Scholar
  35. Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, Kinsner-Ovaskainen A (2017) The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnol 15:48CrossRefGoogle Scholar
  36. Hillyer JF, Albrecht RM (2001) Gastrointestinal presorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharmacol Sci 90:1927–1936CrossRefGoogle Scholar
  37. Hoar TP, Schulman JH (1943) Transparent water in oil dispersions: the oleopathic hydromicelle. Nature 152:102–107CrossRefGoogle Scholar
  38. Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer International Publication, Cham, pp 455–479CrossRefGoogle Scholar
  39. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229CrossRefGoogle Scholar
  40. Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yinling B, Ji Z, Zink JI, Walker NJ, Garantziotis S (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6:5820–5829PubMedPubMedCentralCrossRefGoogle Scholar
  41. Iyer R, Hsia CCW, Nguyen KT (2015) Nano-therapeutics for the lung: state-of-the-art and future perspectives. Curr Pharm Des 21:5233–5244PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jafari SM (2017) An overview of nanoencapsulation techniques and their classification. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, London, pp 1–34Google Scholar
  43. Jain D, Daima HK, Kachhwala S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Digest J Nanomater Biostruct 4:557–563Google Scholar
  44. Jiang J, Chen D-R, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603–285611CrossRefGoogle Scholar
  45. Johnson LE, Johal MS (2018) Understanding nanomaterials, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  46. Jolivet JP, Froidefond C, Pottier A, Chanéac C, Cassaignon S, Tronc E, Euzen P (2004) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quant model. J Mater Chem 14:3281–3288CrossRefGoogle Scholar
  47. Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E (2012) Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release 161:25–37PubMedCrossRefGoogle Scholar
  48. Juškait V, Ramanauskien K, Briedis V (2015) Design and formulation of optimized microemulsions for dermal delivery of resveratrol. Evid Based Complement Alternat Med 540916:10Google Scholar
  49. Kang G, Son H, Lim JM, Kweon H-S, Lee IS, Kang D, Jung JH (2012) Functionalized Fe3O4 nanoparticles for detecting zinc ions in living cells and their cytotoxicity. Chem Eur J 18:5843–5847PubMedCrossRefGoogle Scholar
  50. Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem M, AbuReqaiba A (2015) Advances in nanotechnology for restorative dentistry. Mater 8:717–731CrossRefGoogle Scholar
  51. Kretzmann JA, Evans CW, Norret M, Iyer KS (2017) Supramolecular assemblies of dendrimers and dendritic polymers in nanomedicine. In: Atwood J (ed) Comprehensive supramolecular chemistry II. Academic Press (Elsevier Inc.), USA, pp 237–256CrossRefGoogle Scholar
  52. Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. EXCLI J 13:265–286PubMedPubMedCentralGoogle Scholar
  53. Kuntworbe N, Martini N, Shaw J, Al-Kassas R (2012) Malaria intervention policies and pharmaceutical nanotechnology as a potential tool for malaria management. Drug Dev Res 73:167–184CrossRefGoogle Scholar
  54. LaFemina JP (1995a) Tank waste treatment. Science Task Quarterly Report for January–March 1995. PNL10763Google Scholar
  55. LaFemina JP (1995b) Tank waste treatment. Science Task Quarterly Report for April–June 1995. PNL1076xGoogle Scholar
  56. Lao S-B, Zhang Z-X, Xu H-H, Jiang G-B (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142CrossRefGoogle Scholar
  57. Lee S-W, Chang S-H, Lai Y-S, Lin C-C, Tsai C-M, Lee Y-C, Chen J-C, Huang C-L (2014) Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs. Materials 7:7781–7798PubMedPubMedCentralCrossRefGoogle Scholar
  58. Levchenko AA, Li G, Boerio-Goates J, Woodfield BF, Navrotsky A (2006) TiO2 stability landscape: polymorphism, surface energy and bound water energetics. Chem Mater 18:6324–6332CrossRefGoogle Scholar
  59. Li X, Lu T, Zhang J, Xu J, Hu Q, Zhao S, Shen J (2009) A study of properties of “micelle-enhanced” polyelectrolyte capsules: structure, encapsulation and in vitro release. Acta Biomater 5:2122–2131PubMedCrossRefGoogle Scholar
  60. Li X, Si Z, Lei Y, Tang J, Wang S, Su S, Song S, Zhao L, Zhang H (2010) Direct hydrothermal synthesis of single crystalline triangular Fe3O4 nanoprisms. Cryst Eng Comm 12:2060–2063CrossRefGoogle Scholar
  61. Liang XW, Xu ZP, Grice J, Zvyagin AV, Roberts MS, Liu X (2013) Penetration of nanoparticles into human skin. Curr Pharm Des 19:6353–6366PubMedCrossRefGoogle Scholar
  62. Lin LL, Yamada M, Prow TW (2016) Imaging nanoparticle skin penetration in humans. In: Hamblin MR, Avci P, Eds PTW (eds) Nanoscience in dermatology. Academic Press, London, pp 351–364Google Scholar
  63. Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234PubMedCrossRefGoogle Scholar
  64. Lingayat VJ, Zarekar NS, Shendge RS (2017) Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res 4:67–72Google Scholar
  65. Louchet F, Weiss J, Richeton T (2006) Hall-Petch Law revisited in terms of collective dislocation dynamics. Phys Rev Lett 97:075504–075509PubMedCrossRefGoogle Scholar
  66. Lundquist P, Artursson P (2016) Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev (B) 106:256–276CrossRefGoogle Scholar
  67. Lundquist B, Rawstern R, Varga B, Liu L, Bergeson L (2017) The next big thing is really small: how nanotechnology will change the future of your business, Available at: http://www.nanotech-now.com/current-uses.htm. Accessed 5 Feb 2015
  68. Lv Y, Wang H, Wang X, Bai J (2009) Synthesis, characterization and growing mechanism of monodisperse Fe3O4 microspheres. J Cryst Growth 311:3445–3450CrossRefGoogle Scholar
  69. Maghsoodi M, Yari Z (2014) Effect of temperature on wet agglomeration of crystals. Iran J Basic Med Sci 17:344–350PubMedPubMedCentralGoogle Scholar
  70. Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M (2017) Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J Colloid Interf Sci 497:33–42CrossRefGoogle Scholar
  71. Maisel K, Ensign L, Reddy M, Cone R, Hanes J (2015) Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release 197:48–57PubMedCrossRefGoogle Scholar
  72. Maryami M, Nasrollahzadeh M, Mehdipour E, Sajadi SM (2017) Green synthesis of the Pd/perlite nanocomposite as a heterogeneous catalyst for reduction of nitroarenes and organic dyes in water. Sep Purif Technol 184:298–307CrossRefGoogle Scholar
  73. Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mat Sci Engg C 60:569–578CrossRefGoogle Scholar
  74. McClements DJ (2012) Nanoemulsions versus microemulsions: clarification of critical differences. Soft Matter 8:1719–1729CrossRefGoogle Scholar
  75. Mitchnick M, Lee R, Cohen J, Becker B, Frank B, Gwozdz G, Zubris K, Okoh J, Goldman L (1991) Particle sciences drug development services, Available at: www.particlesciences.com. Accessed 15 May 2017
  76. Mocan L (2013) Drug delivery applications of gold nanoparticles. Biotechnol Mol Bio Nanomed 1:1–7Google Scholar
  77. Momeni SS, Nasrollahzadeh M, Rustaiyan A (2017) Biosynthesis and application of Ag/bone nanocomposite for the hydration of cyanamides in Myrica gale L. extract as a green solvent. J Colloid Interf Sci 499:93–101CrossRefGoogle Scholar
  78. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142PubMedCrossRefGoogle Scholar
  79. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870PubMedCrossRefGoogle Scholar
  80. Nasir A (2010) Nanodermatology: a Glimpse of Caution Just Beyond the Horizon – Part II, Available at: http://www.skintherapyletter.com/2010/15.9/2.html. Accessed 20 May 2017
  81. Nasrollahzadeh M, Atarod M, Jaleh B, Gandomi M (2016a) In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, Congo red and Methylene blue. Ceram Int 42:8587–8596CrossRefGoogle Scholar
  82. Nasrollahzadeh M, Sajadi SM, Hatamifard A (2016b) Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl Catal B Environ 191:209–227CrossRefGoogle Scholar
  83. Nasrollahzadeh M, Momeni SS, Sajadi SM (2017) Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J Colloid Interf Sci 506:471–477CrossRefGoogle Scholar
  84. Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018a) Green synthesis of a Cu/MgO nanocomposite by Cassytha filiformis L. extract and investigation of its catalytic activity in the reduction of methylene blue, congo red and nitro compounds in aqueous media. RSC Adv 8:3723–3735CrossRefGoogle Scholar
  85. Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018b) Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Sep Purif Technol 197:253–260CrossRefGoogle Scholar
  86. Nasrollahzadeh M, Sajadi SM, Maham M, Kohsari I (2018c) Biosynthesis, characterization and catalytic activity of the Pd/bentonite nanocomposite for base- and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of Chromium (VI) and nitro compounds. Micropor Mesopor Mater 271:128–137CrossRefGoogle Scholar
  87. Nasrollahzadeh M, Sajjadi M, Dasmeh HR, Sajadi SM (2018d) Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. J Alloy Compd 763:1024–1034CrossRefGoogle Scholar
  88. Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2019) Green synthesis of Cu/Al2O3 NPs as an efficient and recyclable catalyst for reduction of 2,4-dinitrophenylhydrazine, Methylene blue and Congo red. Compos B Eng 166:112–119CrossRefGoogle Scholar
  89. Nastiti CMRR, Ponto T, Abd E, Grice JE, Benson HAE, Roberts MS (2017) Topical nano and microemulsions for skin delivery. Pharmaceutics 9:37PubMedCentralCrossRefPubMedGoogle Scholar
  90. Noviendri D (2014) Microencapsulation of fucoxanthin by water-in-oil-in water (w/o/w) double emulsion solvent evaporation method: a review. Squalen Bull Mar Fish Postharvest Biotechnol 9:137–150CrossRefGoogle Scholar
  91. Núñeza JD, Benito AM, González R, Aragón J, Arenal R, Maser WK (2014) Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide. Carbon 79:590–604CrossRefGoogle Scholar
  92. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483PubMedCrossRefGoogle Scholar
  93. Panwar P, Pandey B, Lakhera PC, Singh KP (2010) Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomedicine 5:101–108PubMedPubMedCentralGoogle Scholar
  94. Paranjpe M, Müller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15:5852–5873PubMedPubMedCentralCrossRefGoogle Scholar
  95. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895PubMedCrossRefGoogle Scholar
  96. Parker R (2017) Quantum confinement: effects, observations and insights. Nova Science Publishers, New YorkGoogle Scholar
  97. Pauw BR, Kastner C, Thunemann AF (2017) Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison. J Appl Cryst 50(5):1280–1288CrossRefGoogle Scholar
  98. Peddieson J, Chamkha AJ (2016) Modeling of nanofluid aggregation. Curr Nanomater 1(2):117–123CrossRefGoogle Scholar
  99. Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R (2018) Nanoclays for biomedical applications. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham, pp 1–19Google Scholar
  100. Ragaei M, Sabry AH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545Google Scholar
  101. Rajput N (2015) Methods of preparation of nanoparticles-a review. Int J Adv Res Technol 7:1806–1811Google Scholar
  102. Ramteke KH, Joshi SA, Dhole SN (2012) Solid lipid nanoparticle: A review. IOSR J Pharm 2(6):34–44Google Scholar
  103. Rector DR, Bunker BC (1995) Effect of colloidal aggregation on the sedimentation and rheological properties of tank waste. United States: N. p., 1995. Web. Pacific Northwest Lab., Richland, WA, USA.  https://doi.org/10.2172/113874.PNL-10761 CrossRefGoogle Scholar
  104. Riasat R, Guangjun N, Riasat Z, Aslam I (2016) Effects of nanoparticles on gastrointestinal disorders and therapy. J Clin Toxicol 6:313CrossRefGoogle Scholar
  105. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153PubMedCrossRefGoogle Scholar
  106. Saini JK, Nautiyal U, Kumar MS, Singh D, Anwar F (2014) Microemulsions: a potential novel drug delivery system. Int J Pharm Med Res 2:15–20Google Scholar
  107. Sajanlal PR, Pradeep T (2009) Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res 2:306–320CrossRefGoogle Scholar
  108. Sajjadi M, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus L. leaf extract and evaluation of its catalytic activity. J Colloid Interf Sci 497:1–13CrossRefGoogle Scholar
  109. Sanders WC (2018) Basic principles of nanotechnology. CRC Press, Boca RatonCrossRefGoogle Scholar
  110. Schasfoort RBM (2017) Introduction to surface plasmon resonance. In: Schasfoorst RBM (ed) Handbook of surface plasmon resonance, 2nd edn. Royal Soc Chem, London, pp 1–26CrossRefGoogle Scholar
  111. Schneider CS, Craig S, Xu Q, Boylan NJ, Chisholm J, Tang BC (2017) Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv 3(4):e1601556.  https://doi.org/10.1126/sciadv.1601556 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Selmer-Olsen E, Ratnaweera HC, Pehrson R (1996) A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste. Wat Sci Tech 34:33–40CrossRefGoogle Scholar
  113. Shah N, Mewada RK, Shah T (2011) Application of biodegradable polymers in controlled drug delivery. Proc Int Conf on current trends in technology. Nirma University, Ahmedabad, pp 1–6Google Scholar
  114. Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98PubMedPubMedCentralCrossRefGoogle Scholar
  115. Siddiqi KS, Husen A (2016b) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482PubMedPubMedCentralCrossRefGoogle Scholar
  116. Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23PubMedCrossRefGoogle Scholar
  117. Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92PubMedPubMedCentralCrossRefGoogle Scholar
  118. Siddiqi KS, Rahman A, Tajuddin, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498PubMedPubMedCentralCrossRefGoogle Scholar
  119. Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14CrossRefGoogle Scholar
  120. Siddiqi KS, Rahman A, Tajuddin HA (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141PubMedPubMedCentralCrossRefGoogle Scholar
  121. Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 13:231PubMedPubMedCentralCrossRefGoogle Scholar
  122. Suganya V, Anuradha V (2017) Microencapsulation and Nanoencapsulation: a review. Int J Pharm Clin Res 9(3):233–239CrossRefGoogle Scholar
  123. Tamarov K, Näkki S, Xu W, Lehto V-P (2018) Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles. J Mater Chem B 6:3632–3649CrossRefGoogle Scholar
  124. Tan C, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–651CrossRefGoogle Scholar
  125. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160PubMedCrossRefGoogle Scholar
  126. Veszelka S, Bocsik A, Walter FR, Hantosi D, Deli MA (2015) Blood-brain barrier co-culture models to study nanoparticle penetration: focus on co-culture systems. Acta Biol Szeged 59:157–168Google Scholar
  127. Wang L-P, Wang J-Y (2014) Skin penetration of inorganic and metallic nanoparticles. J Shanghai Jiaotong Univ (Sci) 19:691–697CrossRefGoogle Scholar
  128. Wang Q, Yan J, Yang J, Li B (2016b) Nanomaterials promise better bone repair. Mater Today 19:451–463CrossRefGoogle Scholar
  129. Wang Y, Li P, Tran TT-D, Zhang J, Kong L (2016c) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nano 6:26–32Google Scholar
  130. Wang M, Lee RJ, Bi Y, Li L, Yan G, Lu J, Meng Q, Teng L, Xie J (2017) Transferrin-conjugated liposomes loaded with novel dihydroquinoline derivatives as potential anticancer agents. PLoS One 12:e0186821PubMedPubMedCentralCrossRefGoogle Scholar
  131. Xia T, Zhu Y, Mu L, Zhang Z-F, Liu S (2016) Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Nat Sci Rev 3:416–429Google Scholar
  132. Yah CS, Iyuke SE, Simate GS (2011) A review of nanoparticles toxicity and their routes of exposures. Iranian J Pharm Sci 8:299–314Google Scholar
  133. Yasun E, Kang H, Erdal H, Cansiz S, Ocsoy I, Huang Y-F, Tan W (2013) Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods. Interface Focus 3:1–9CrossRefGoogle Scholar
  134. Yeagle P (2017) Nanoparticles for drug delivery in lungs. Science 356:37–38PubMedGoogle Scholar
  135. Zhang Y, Nypelö T, Salas C, Rojas OJ (2013) Cellulose nanofibrils: from strong materials to bioactive surfaces. J Renew Mater 1:195–206CrossRefGoogle Scholar
  136. Zielińska-Jurek A (2014) Progress, challenge, and perspective of bimetallic TiO2-based photocatalysts. J Nanomater 4:1–17CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahmoud Nasrollahzadeh
    • 1
  • S. Mohammad Sajadi
    • 2
  • Muhammad Iqbal
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of QomQomIran
  2. 2.Scientific Research CenterSoran University, Kurdistan Regional GovernmentSoranIraq
  3. 3.Department of Botany, Faculty of ScienceJamia Hamdard (Deemed University)New DelhiIndia

Personalised recommendations