Nano-fertilization to Enhance Nutrient Use Efficiency and Productivity of Crop Plants

  • Muhammad Iqbal
  • Shahid Umar
  • Mahmooduzzafar


Nutrients present in the soil are taken up by plants for their successful growth and survival. Loss of essential elements from soil, mainly by leaching, volatilization, erosion, and uptake by plants, reduces soil fertility and necessitates application of multiple-element fertilizer to make up this loss. Nutrient use efficiency of plants lies around 30–35%, 18–20%, and 35–40% for N, P, and K, respectively, with the conventional fertilizers. The use of biofertilizers in combination or in place of chemical fertilizers could not make much difference. Currently, nano-fertilizers (NFs) seem to hold promise to improve the nutrient use efficiency and hence the crop yield. They ensure a better delivery of elements such as P and Zn, which are otherwise poorly bioavailable. They also reduce the loss of runaway nutrients such as nitrate. Nano-fertilizers are produced mainly through encapsulation or coating of nutrients with nanoemulsions and nanoparticles (NPs), respectively. The NFs thus serve as nanocarriers of nutrients, which may be categorized as nanoclays, hydroxyapatite NPs, polymeric NPs, carbon-based nanomaterials (NMs), mesoporous silica, and miscellaneous materials. Interestingly, nanomaterials, including aptamer derivatives, carbon nanotubes, quantum dots, etc., are also used in agriculture sector as nanosensors (or nano-biosensors) to indicate the presence of microbes, contaminants, pollutants, toxins, pH level, nutrient level, and moisture content. In general, all NFs provide a slow, steady, and time-dependent release of essential nutrients to ensure their delivery to the plant in a balanced and need-based form. NFs can improve the nutrient use efficiency about threefolds and improve the crop productivity by promoting seed germination, seedling growth, nitrogen metabolism, photosynthetic activity, protein synthesis, antioxidant defense, etc. Some limitations and adverse effects of NFs have also been reported. However, these can be overcome by proper standardization of NF dose and selection of befitting NM for the test crop. Efficacy of the NF depends on its capacity of ionization and successful delivery of nutrients to the sink, which are modulated by the chemical composition of NMs, their concentration and aggregation state, metabolic potential of plant species, and the local environmental conditions. It is important to investigate whether NFs are fully transformed into ionic forms in the plant and later incorporated into proteins and different metabolites, or some of their parts remain intact and reach the consumers through food chain.


Agrochemicals Intelligent fertilizers Nanomaterials Phytonutrients 


  1. Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish J Agri Res 14:0902Google Scholar
  2. Ahmad A, Abrol YP, Iqbal M (2003) Photosynthetic nitrogen use efficiency under variable environments. In: Pant RC, Ghildiyal MC (eds) Sustainable plant productivity under changing environment, Souvenir, 2nd international congress of plant physiology. IARI, New Delhi, pp 59–66Google Scholar
  3. Allen ER, Hossner LR, Ming DW, Henninger DL (1996) Release rates of phosphorus, ammonium and potassium in clinoptilolite-phosphate rock systems. Soil Sci Soc Amer J 60:1467–1472CrossRefGoogle Scholar
  4. Ambrozova P, Kynicky J, Urubek T, Nguyen VD (2017) Synthesis and modification of clinoptilolite. Molecules 22:1107PubMedCentralCrossRefPubMedGoogle Scholar
  5. Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil-plant system – toxicity and underlying potential mechanisms. Environ Res 138:306–325PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aref IM, Khan PR, Khan S, El-Atta H, Ahmed AI, Iqbal M (2016) Modulation of antioxidant enzymes in Juniperus procera needles in relation to habitat environment and dieback incidence. Trees Struc Func 30:1669–1681CrossRefGoogle Scholar
  7. Arif N, Yadav V, Singh S, Singh S, Mishra RK, Sharma S, Dubey NK, Tripathi DK, Chauhan DK (2016) Current trends of engineered nanoparticles (ENPs) in sustainable agriculture: an overview. J Environ Anal Toxicol 6:5CrossRefGoogle Scholar
  8. Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A (2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 6:13Google Scholar
  9. Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148CrossRefGoogle Scholar
  10. Azimi R, Feizi H, Hosseini MK (2013) Nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyron desertorum). Not Sci Biol 5:325–331CrossRefGoogle Scholar
  11. Bansiwal AK, Rayalu SS, Labhasetwar NK, Juwarkar AA, Devotta S (2006) Surfactant modified zeolite as a slow release fertilizer for phosphorus. J Agric Food Chem 54:4773–4779PubMedCrossRefGoogle Scholar
  12. Benício LPF, Constantino VRL, Pinto FG, Vergütz L, Tronto J, da Costa LM (2017) Layered double hydroxides: new technology in phosphate fertilizers based on nanostructured materials. ACS Sustain Chem Eng 5:399–409CrossRefGoogle Scholar
  13. Benzon HRL, Rubenecia MRU, Ultra VU Jr, Lee SC (2015) Nano-fertilizer affects the growth, development, and chemical properties of rice. Int J Agron Agri Res 7:105–117Google Scholar
  14. Berekaa M (2015) Nanotechnology in food industry: advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4:345–357Google Scholar
  15. Bernardo MP, Guimarães GGF, Majaron VF, Ribeiro C (2018) Controlled release of phosphate from layered double hydroxide structures: dynamics in soil and application as smart fertilizer. ACS Sustain Chem Eng 6:5152–5161CrossRefGoogle Scholar
  16. Bielmyer-Fraser GK, Jarvis TA, Lenihan HS, Miller RJ (2014) Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. Environ Sci Technol 48:13443–13450PubMedCrossRefGoogle Scholar
  17. Bortolin A, Aouada F, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agri Food Chem 61:7431–7439CrossRefGoogle Scholar
  18. Cai D, Wu Z, Jiang J, Wu Y, Feng H, Brown IG, Chu PK, Yu Z (2014) Controlling nitrogen migration through micro-nano networks. Sci Rep 4:3665PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chhowalla M (2017) Slow-release nano-fertilizers for bumper crops. ACS Cent Sci 3:156–157PubMedPubMedCentralCrossRefGoogle Scholar
  21. Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515CrossRefGoogle Scholar
  22. Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119CrossRefGoogle Scholar
  23. Crawshaw C (2018) Intelligent nano-fertilizers herald the future. Alberta Barley Blog.
  24. Dakovic A, Tomasevic M, Rottinghaus EG, Matijasevic S, Sekulic Z (2007) Fumonisin B1 adsorption to octadecyldimetylbenzyl ammonium-modified clinoptilolite-rich zeolitic tuff. Micropor Mesopor Mat 105:285–290CrossRefGoogle Scholar
  25. Dapkekar A, Deshpande P, Oak MD, Paknikar KM, Jyutika M, Rajwade JM (2018) Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep 8:6832PubMedPubMedCentralCrossRefGoogle Scholar
  26. Das A, Prasad R, Srivastava RB, Deshmukh S, Rai MK, Varma A (2013) Co-cultivation of Piriformospora indica with medicinal plants: case studies. In: Varma A, Kost G, Oelmüller R (eds) Piriformospora indica: Sebacinales and their biotechnological applications. Springer, Berlin, Heidelberg, pp 149–171CrossRefGoogle Scholar
  27. Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hort 210:57–64CrossRefGoogle Scholar
  28. De la Torre RR, Servin A, Hawthorne J, Xing B, Newman LA, Ma X, Chen G, White JG (2015) Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ Sci Technol 49:11866–11874CrossRefGoogle Scholar
  29. Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dimkpa CO, Bindraban PS (2018) Nanofertilizers: new products for the industry? J Agric Food Chem 66:6462–6473PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P (2018) Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor 9:793–800CrossRefGoogle Scholar
  33. Dubey A, Mailapalli DR (2016) Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 22. Springer International Publishing, Dordrecht, pp 307–330CrossRefGoogle Scholar
  34. Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 271–288CrossRefGoogle Scholar
  35. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces: further evidence for a stomatal pathway. Physiol Plant 132:491–502PubMedCrossRefPubMedCentralGoogle Scholar
  36. El-Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287PubMedCrossRefPubMedCentralGoogle Scholar
  37. El-Ghamry AM, Mosa AA, Alshall TA, El-Ramady HR (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodiv Soil Secur 2:22Google Scholar
  38. Elizondo-Villarreal N, Obregón-Guerra R, García-Méndez M, Sánchez-Espinoza A-P, Alcorta-García M-A, Torres-Barrera RO, Coello V, Castaño VM (2016) Nanomodification of a natural clinoptilolite zeolite. Rev Adv Mater Sci 47:74–78Google Scholar
  39. El-Kereti MA, El-Feky SA, Khater MS, Osman YA, El-Sherbini EA (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5:169–181PubMedCrossRefPubMedCentralGoogle Scholar
  40. El-Ladan IY, Maiwada NA, Rumah AA (2014) Factors affecting soil quality maintenance in northern Katsina State, Nigeria. Sci World J 9:39–45Google Scholar
  41. El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Elmahrouk M, Bayoumi Y, Shalaby T, Amer M, Shehata S, Fari M, Domokos-Szabolcsy E, Sztrik A, Prokisch J, Pilon-Smits EAH, Pilon M, Selmar D, Haneklaus S, Schnug E (2018) Plant nano-nutrition: perspectives and challenges. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment, Environmental chemistry for a sustainable world series. Springer International Publishing, Cham, pp 129–161CrossRefGoogle Scholar
  42. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  43. Everaert M, Warrinnier R, Baken S, Gustafsson JP, De Vos D, Smolders E (2016) Phosphate-exchanged Mg-Al layered double hydroxides: a new slow release phosphate fertilizer. ACS Sustain Chem Eng 4:4280–4287CrossRefGoogle Scholar
  44. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gabrielli P, Barbante C, Plane JM, Varga A, Hong S, Cozzi G, Gaspari V, Planchon FA, Cairns W, Ferrari C, Crutzen P, Cescon P, Boutron CF (2004) Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature 432:1011–1014PubMedCrossRefPubMedCentralGoogle Scholar
  46. García-Sánchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gerdini FS (2016) Effect of nano potassium fertilizer on some parchment pumpkin (Cucurbita pepo) morphological and physiological characteristics under drought conditions. Int J Farm Allied Sci 5:367–371Google Scholar
  48. Ghahremani A, Akbari K, Yousefpour M, Ardalani H (2014) Effects of nano-potassium and nano-calcium chelated fertilizers on qualitative and quantitative characteristics of Ocimum basilicum. Int J Pharm Res Schol 3:00167Google Scholar
  49. Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752CrossRefGoogle Scholar
  50. Giroto AS, Guimarães GGF, Foschini M, Ribeiro C (2017) Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Sci Rep 7:46032PubMedPubMedCentralCrossRefGoogle Scholar
  51. Glenn JB, Klaine SJ (2013) Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes. Environ Sci Technol 47:10223–10230PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between sliver nanoparticles and plant growth. In: Proceedings of the international symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory. Greensys-2013, vol 6, pp 225–227Google Scholar
  54. Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health. 6:77–83Google Scholar
  55. Hemraj C (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22CrossRefGoogle Scholar
  56. Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Coll Surf Biointerf 62:42–50CrossRefGoogle Scholar
  59. Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hu X, Kang J, Lu K, Ruiren Zhou R, Mu L, Zhou Q (2014) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 4:6122PubMedPubMedCentralCrossRefGoogle Scholar
  61. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  62. Husted S (2018) Innovative approach taken to phosphorus nanofertilizer research. AG Chemi Group.
  63. IFA (2016) Nutrient management handbook, International Fertilizer Association (IFA).
  64. Iqbal M, Ali ST, Mahmooduzzafar (2000) Photosynthetic performance of certain dicotyledonous tropical plants under degraded environment. In: Khan MA, Farooq S (eds) Environment, biodiversity and conservation. APH Publishing Corporation, New Delhi, pp 408–427Google Scholar
  65. Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405PubMedCrossRefGoogle Scholar
  66. Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnol 13:677–684CrossRefGoogle Scholar
  67. Kale AP, Gawade SN (2016) Studies on nanoparticle induced nutrient use efficiency of fertilizer and crop productivity. Green Chem Tech Letter 2:88–92CrossRefGoogle Scholar
  68. Kaushal M, Wani SP (2017) Nanosensors: frontiers in precision agriculture. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer Nature, Singapore, pp 279–291CrossRefGoogle Scholar
  69. Khalifa NS, Hasaneen MN (2018) The effect of chitosan-PMAA-NPK nanofertilizer on Pisum sativum plants. 3 Biotech 8:193Google Scholar
  70. Khanm H, Vaishnavi BA, Shankar AG (2018) Rise of nano-fertilizer era: effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int J Curr Microbiol App Sci 7:1861–1871CrossRefGoogle Scholar
  71. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135PubMedCrossRefGoogle Scholar
  72. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators. Effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kim JI, Park HG, Chang KH, Nam DH, Yeo MK (2016) Trophic transfer of nano-TiO2 in a paddy microcosm: a comparison of single-dose versus sequential multi-dose exposures. Environ Pollut 212:316–324PubMedCrossRefGoogle Scholar
  74. Kirschbaum MUF (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124PubMedCrossRefGoogle Scholar
  75. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78Google Scholar
  76. Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Arachchige BDM, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GAJ (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221PubMedCrossRefGoogle Scholar
  77. Kumar R, Ashfaq M, Verma N (2018) Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. J Mater Sci 53:7150–7164CrossRefGoogle Scholar
  78. Kundu S, Adhikari T, Mohanty SR, Rajendiran S, Vassanda Coumar M, Saha JK, Patra AK (2016) Reduction in nitrous oxide emission from nano zinc oxide and nano rock phosphate coated urea. Agrochimica 60:59–70Google Scholar
  79. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nano-conjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, Saleem M (2016) Synthesis and characterization of zeolite based nano–composite: an environment friendly slow release fertilizer. Micropor Mesopor Mat 232:174–183CrossRefGoogle Scholar
  81. Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  82. Li JX, Wee CD, Sohn BK (2010) Growth response of hot pepper applied with ammonium (NH4+) and potassium (K+)-loaded zeolite. Korean J Soil Sci Fert 43:619–625Google Scholar
  83. Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Zhong J, Huang H, Wang Y, Li S, Lifshitz Y, Lee S-T, Kang Z (2018) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mat 1:663–672Google Scholar
  84. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefPubMedCentralGoogle Scholar
  85. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686PubMedPubMedCentralCrossRefGoogle Scholar
  86. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139PubMedCrossRefGoogle Scholar
  87. Liu J, Zhang YD, Zhang ZM (2009) The application research of nano-biotechnology to promote increasing of vegetable production. Hubei Agril Sci 1:041Google Scholar
  88. Liu R, Kang Y, Pie L, Wan S, Liu S, Liu S (2016a) Use of a new controlled-loss fertilizer to reduce nitrogen losses during winter wheat cultivation in the Danjiangkou Reservoir area of China. Commun Soil Sci Plant Anal 47:1137–1147CrossRefGoogle Scholar
  89. Liu R, Zhang H, Lal R (2016b) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on Lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42CrossRefGoogle Scholar
  90. Lopez-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lu J, Bowles M (2013) How will nanotechnology affect agricultural supply chains? Int Food Agribus Manag Rev 16:21–42Google Scholar
  92. Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefPubMedCentralGoogle Scholar
  93. Malebra M, Cerana R (2018) Recent advances of chitosan applications in plants. Polymers 10:118CrossRefGoogle Scholar
  94. Malhi SS, Haderlin LK, Pauly DG, AM J (2002) Improving fertiliser use efficiency. Better Crops 86:22–25Google Scholar
  95. Manikandan A, Subramanian KS (2016) Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci 9:1–9CrossRefGoogle Scholar
  96. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29:1–13Google Scholar
  97. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London 889 ppGoogle Scholar
  98. Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res Int 23:1732–1741PubMedCrossRefGoogle Scholar
  99. Mashock MJ, Kappell AD, Hallaj N, Hristova KR (2016) Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae. Environ Toxicol Chem 35:134–143PubMedCrossRefPubMedCentralGoogle Scholar
  100. Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-ground: the role of specialized metabolites in the rhizosphere. Plant J 90:788–807PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 25–67Google Scholar
  102. Mazur GA, Medvid GK, Gvigora IT (1986) Use of natural zeolite to increase the fertilizer of coarse soils. Soviet Soil Sci 16:105–111Google Scholar
  103. Ming DW, Mumpton FA (1989) Zeolites in soils. In: Dixon LB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 873–911Google Scholar
  104. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefPubMedCentralGoogle Scholar
  105. Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543–551PubMedCrossRefPubMedCentralGoogle Scholar
  106. Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52:423–437CrossRefGoogle Scholar
  107. Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8:013001CrossRefGoogle Scholar
  108. Mrakovcic M, Absenger M, Riedl R, Smole C, Roblegg E, Fröhlich LF, Fröhlich E (2013) Assessment of long-term effects of nanoparticles in a microcarrier cell culture system. PLoS One 8:e56791PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172PubMedPubMedCentralCrossRefGoogle Scholar
  110. Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Zahid R, Alam MFE, Imran M (2018) Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest J Nanomater Biostr 13:315–323Google Scholar
  111. Nair PM, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res Int 21:12709–12022PubMedCrossRefGoogle Scholar
  112. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  113. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220PubMedCrossRefGoogle Scholar
  114. Narendhran S, Rajiv P, Sivaraj R (2016) Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc-deficient soil. Int J Pharm Pharm Sci 8:365–371Google Scholar
  115. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefGoogle Scholar
  116. Oliveira JLD, Campos EVR, Pereira AES, Pasquoto T, Lima R, Grillo R, De Andrade DJ, Dos Santos FA, Fraceto LF (2018) Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J Agric Food Chem 6:1330–1340CrossRefGoogle Scholar
  117. Omanović-Mikličanin E, Maksimović M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herz 47:59–70Google Scholar
  118. Palmqvist NG, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Nature 5:10146Google Scholar
  119. Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Euro J Soil Sci 63:437–456CrossRefGoogle Scholar
  120. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, India, pp 289–300CrossRefGoogle Scholar
  121. Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci 26:693–701CrossRefGoogle Scholar
  122. Patolsky F, Zheng G, Lieber C (2006) Nanowire-based biosensors. Anal Chem 78:4260–4269PubMedCrossRefGoogle Scholar
  123. Perreault F, Samadani M, Dewez D (2014) Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8:374–382PubMedCrossRefGoogle Scholar
  124. Prasad R, Kamal S, Sharma PK, Oelmuller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monnieri. J Basic Microbiol 53:1016–1024PubMedCrossRefGoogle Scholar
  125. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. African J Biotech 13:705–713CrossRefGoogle Scholar
  126. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014PubMedPubMedCentralCrossRefGoogle Scholar
  127. Preetha PS, Balakrishnan N (2017) A review of nanofertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6:3117–3133CrossRefGoogle Scholar
  128. Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol App Sci 7:3325–3335CrossRefGoogle Scholar
  129. Rahale S (2011) Nutrient release pattern of nanofertilizer formulation. PhD (Agri.) Thesis. Tamilnadu Agricultural University, CoimbatoreGoogle Scholar
  130. Raliya R, Saharan V, Dimpka C, Biswas P (2018) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503PubMedCrossRefPubMedCentralGoogle Scholar
  131. Ramesh K, Reddy DD (2011) Zeolites and their potential uses in agriculture. Adv Agron 113:219–241CrossRefGoogle Scholar
  132. Rane M, Bawskar M, Rathod D, Nagaonkar D, Rai M (2015) Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays. Adv Nat Sci Nanosci Nanotechnol 6:045014CrossRefGoogle Scholar
  133. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473Google Scholar
  134. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78PubMedPubMedCentralCrossRefGoogle Scholar
  135. Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E, Spurgeon D, Svendsen C (2016) Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res Int 23:4120–4128PubMedCrossRefGoogle Scholar
  136. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rispail N, De Matteis L, Santos R, Miguel AS, Custardoy L, Testillano PS, Risueño MC, Pérez-de-Luque A, Maycock C, Fevereiro P, Oliva A, Fernández-Pacheco R, Ibarra MR, De la Fuente JM, Marquina C, Rubiales D, Prats E (2014) Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl Mater Interfaces 6:9100–9110PubMedCrossRefPubMedCentralGoogle Scholar
  138. Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633PubMedCrossRefPubMedCentralGoogle Scholar
  139. Rodrigues SM, Trindade T, Duarte AC, Pereira R, Koopmans GF, Römkens PFAM (2016) A framework to measure the availability of engineered nanoparticles in soil: trends in soil tests and analytical tools. Trends Anal Chem 75:129CrossRefGoogle Scholar
  140. Romih T, Drašler B, Jemec A, Drobne D, Novak S, Golobič M, Makovec D, Susič R, Kogej K (2015) Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber. Sci Total Environ 508:76–84PubMedCrossRefPubMedCentralGoogle Scholar
  141. Roshanravan B, Soltani SM, Mahdavi F, Rashid SA, Yusop MK (2014) Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity. Chem Speciat Bioavailab 26:249–256CrossRefGoogle Scholar
  142. Roshanravan B, Soltani SM, Rashid SA, Mahdavi F, Yusop MK (2015) Enhancement of nitrogen release properties of urea–kaolinite fertilizer with Chitosan binder. Chem Speciat Bioavailab 27:44–51CrossRefGoogle Scholar
  143. Ruhil K, Sheeba, Ahmad A, Iqbal M, Tripathy BC (2015) Photosynthesis and growth responses of mustard (Brassica juncea L. cv. Pusa Bold) plants to free air carbon-dioxide enrichment (FACE). Protoplasma 252:935–946PubMedCrossRefGoogle Scholar
  144. Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:33CrossRefGoogle Scholar
  145. Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu (2014a) Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hort 175:1–8CrossRefGoogle Scholar
  146. Sabir S, Arshad M, Chaudhari SK (2014b) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 2014:925494CrossRefGoogle Scholar
  147. Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927Google Scholar
  148. Savoy H (1999) Fertilizers and their use. PB-1637, agricultural extension service, The University of Tennessee, KnoxvilleGoogle Scholar
  149. Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ (2015) Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology 24:239–261PubMedCrossRefPubMedCentralGoogle Scholar
  150. Sharifi R, Mohammadi K, Rokhzadi A (2016) Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environ Exp Biol 14:151–156CrossRefGoogle Scholar
  151. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037Google Scholar
  152. Sharma R, Ragavan KV, Thakur MS, Raghavaro KSMS (2015) Recent advances in nanoparticle-based aptasensors for food contaminants. Biosens Bioelectron 74:612–627PubMedCrossRefPubMedCentralGoogle Scholar
  153. Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197PubMedCrossRefPubMedCentralGoogle Scholar
  154. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nano Res Lett 12:92CrossRefGoogle Scholar
  155. Simarmata T, Hersanti, Turmuktini T, Fitriatin BN, Setiawati MR, Purwanto (2017) Application of bioameliorant and biofertilizers to increase the soil health and rice productivity. HAYATI J Biosci 23:181–184. Scholar
  156. Singh MD, Chirag G, Prakash PO, Mohan MH, Prakasha G, Vishwajith (2017) Nano fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agri Sci 9:3831–3833Google Scholar
  157. Sohair EED, Abdall AA, Amany AM, Houda RA (2018) Effect of nitrogen, phosphorus and potassium nano fertilizers with different application times, methods and rates on some growth parameters of Egyptian cotton (Gossypium barbadense L.). Biosci Res 15:549–564CrossRefGoogle Scholar
  158. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101Google Scholar
  159. Soliman AS, Hassan M, Abou-Elella F, Ahmed AHH, El-Feky SA (2016) Effect of nano and molecular phosphorus fertilizers on growth and chemical composition of baobab (Adansonia digitata L.). J Plant Sci 11:52–60CrossRefGoogle Scholar
  160. Songkhum P, Wuttikhun T, Chanlek N, Khemthong P, Laohhasurayotin K (2018) Controlled release studies of boron and zinc from layered double hydroxides as the micronutrient hosts for agricultural application. Appl Clay Sci 152:311–322CrossRefGoogle Scholar
  161. Sturikova H, Krystofova O, Hedbavny J, Adam V (2017) The comparison of effect of zinc sulphate and zinc oxide nanoparticles on plants. Mendel Net 24:932–936Google Scholar
  162. Subbarao CV, Kartheek G, Sirisha D (2013) Slow release of potash fertilizer through polymer coating. Int J Appl Sci Eng 1:25–30Google Scholar
  163. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 69–80Google Scholar
  164. Sun D, Hussain H, Yi Z, Siegele R, Cresswell T, Kong L, Cahill D (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402PubMedCrossRefPubMedCentralGoogle Scholar
  165. Syu YY, Hung J-H, Chen J-C, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agribiol Res 3:257–262CrossRefGoogle Scholar
  167. Tepe N, Bau M (2014) Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland. Sci Total Environ 488–489:243–251PubMedCrossRefPubMedCentralGoogle Scholar
  168. Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer Nature, Singapore, pp 317–340Google Scholar
  169. Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (Ag NPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177PubMedCrossRefPubMedCentralGoogle Scholar
  170. Umar S, Anjana, Iqbal M (2003) Potassium fertilization: a substitute to pesticide application in field crops. In: Prakash S (ed) Proceedings of national symposium on biochemical sciences, health and environmental aspects. Allied Publishers, New Delhi, pp 494–496Google Scholar
  171. Umar S, Anjana, Iqbal M (2011) Interactive effects of potassium and nitrogen nutrition on physiological use efficiency of nitrogen and crop yield. In: Jain V, Kumar PA (eds) Nitrogen use efficiency in plants. New India Publishing Agency, New Delhi, pp 125–155Google Scholar
  172. Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219PubMedCrossRefPubMedCentralGoogle Scholar
  173. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390PubMedPubMedCentralCrossRefGoogle Scholar
  174. Vittori AL, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res Int 22:1841–1853CrossRefGoogle Scholar
  175. Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012a) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841CrossRefGoogle Scholar
  176. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1–13Google Scholar
  178. Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016a) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–334PubMedCrossRefGoogle Scholar
  179. Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243PubMedPubMedCentralGoogle Scholar
  180. Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228PubMedCrossRefGoogle Scholar
  181. Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6:65–71PubMedCrossRefGoogle Scholar
  182. White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wong MH, Misra RP, Giraldo JP, Kwak S-Y, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172PubMedCrossRefGoogle Scholar
  184. Xu H, Jiang Q, Reddy N, Yang Y (2011) Hollow nanoparticles from zein for potential medical applications. J Mater Chem 21:18227CrossRefGoogle Scholar
  185. Yasmin J, Ahmed MR, Cho B-K (2016) Biosensors and their applications in food safety: a review. J Biosyst Eng 41:240–254CrossRefGoogle Scholar
  186. Yuvaraj M, Subramanian KS (2014) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61:319–326CrossRefGoogle Scholar
  187. Yuvaraj M, Subramanian KS (2017) Development of slow release Zn fertilizer using nano-zeolite as carrier. J Plant Nutr 41:311–320CrossRefGoogle Scholar
  188. Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Tech Agri 3:17CrossRefGoogle Scholar
  189. Zhou JM, Huang PM (2007) Kinetics of potassium release from illite as influenced by different phosphates. Geoderma 138:221–228CrossRefGoogle Scholar
  190. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefPubMedCentralGoogle Scholar
  191. Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2010) Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Iqbal
    • 1
  • Shahid Umar
    • 1
  • Mahmooduzzafar
    • 1
  1. 1.Department of Botany, Faculty of ScienceJamia Hamdard (Deemed University)Hamdard NagarIndia

Personalised recommendations