Skip to main content

Role of Nanomaterials in the Mitigation of Abiotic Stress in Plants

  • Chapter
  • First Online:
Book cover Nanomaterials and Plant Potential

Abstract

Nanotechnology opens up a wide array of opportunities in various fields including agriculture. Many of those living in developing countries are faced with daily food shortage as a result of adverse environmental impacts such as global warming, drought, floods, extreme climatic conditions, salinity, and loss of soil fertility. Global warming or heat stress, which is often accompanied by drought stress, is a significant factor influencing the sustainable growth and production of crop plants. On the other hand, loss of fluidity of membrane in plant cells and leakage of solutes are the distinct effects of cold stress. Salinity stress reduces the ability of plants to take up water and nutrients apart from causing nutritional imbalance which inhibits growth and yield. Flooding of fields often produces toxic compounds and gases which may kill crop plants. Almost all abiotic stresses enhance the generation of reactive oxygen species (ROS) which damage the cellular membranes, proteins, and nucleic acids that are vital to plant survival, growth, and yield. This situation makes it imperative to develop an improved and sustainable farming technology and also cultivars resistant to all these hazards in order to address food-security issues effectively. In view of this, various nanomaterials are now being used as a vital tool for improving growth and productivity of crops facing abiotic stresses. Nanoparticles possess high surface energy and a high surface/volume ratio, which enhance their bioavailability and bioactivity in comparison to their standard or bulk forms. They easily penetrate into plant cells, are readily taken up by plants, and then influence the key events of plants’ life cycle such as seed germination, seedling growth, root formation, photosynthesis, flowering, and yield. However, in addition to their beneficial effects on plant system under abiotic stress, NPs have also been shown to be toxic to plants. This chapter is focused on the modern strategies adopted for mitigation of abiotic stress in plants by using the potential nanomaterials in order to maximize the crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Zeid HM, Ismail GSM (2018) The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L. to salt stress. Egypt J Bot 58:73–85

    Google Scholar 

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Kell AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39:139–146

    Article  Google Scholar 

  • Agrawal SB, Mishra S (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Saf 72:610–618

    Article  CAS  PubMed  Google Scholar 

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. POJ 9:106–114

    CAS  Google Scholar 

  • Alsaeedi A, El-Ramady A, Alshaal T, El-Garawani M, Elhawat N, Al-Otaibi A (2018) Exogenous nanosilica improves germination and growth of cucumber by maintaining K+/Na+ ratio under elevated Na+ stress. Plant Physiol Biochem 125:164–171

    Article  CAS  PubMed  Google Scholar 

  • Amiri RM, Yur’eva NO, Shimshilashvili KR, Goldenkova-Pavlova IV, Pchelkin VP, Kuznitsova EI, Tsydendambaev VD, Trunova TI, Los DA, Salehi Jouzani G, Nosov AM (2010) Expression of acyl-lipid D 12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato. J Integr Plant Biol 52:289–297

    Article  CAS  PubMed  Google Scholar 

  • Andy P (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Google Scholar 

  • Aragay G, Pino F, Merkoci A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112:5317–5338

    Article  CAS  PubMed  Google Scholar 

  • Aref MI, El-Atta H, El-Obeid M, Ahmed AI, Khan PR, Iqbal M (2013) Effect of water stress on relative water and chlorophyll contents of Juniperus procera Hochst. ex Endlicher in Saudi Arabia. Life Sci J 10(4):681–685

    Google Scholar 

  • Aref IM, Khan PR, Khan S, El-Atta H, Ahmed AI, Iqbal M (2016) Modulation of antioxidant enzymes in Juniperus procera needles in relation to habitat environment and dieback incidence. Trees 30:1669–1681

    Article  Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 729–761

    Google Scholar 

  • Ashkavand P, Tabari M, Zarafshar M, Tomaskova I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. For Res Pap 76:350–359

    Google Scholar 

  • Askary M, Talebi SM, Amini F, Bangan ADB (2017) Effects of iron nanoparticles on Mentha piperita under salinity stress. Biologija 63:65–75

    Article  CAS  Google Scholar 

  • Asseng S, Zhu Y, Wang E, Zhang W (2015) Crop modeling for climate change impact and application. In: Sadras VO, Calderini DF (eds) Crop physiology: applications for genetic improvement and agronomy, 2nd edn. Academic Press: San Diego, CA, USA, pp 505–546

    Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Tech 16:25–29

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Colmer TD (2014) Plant tolerance of flooding stress – recent advances. Plant Cell Environ 37:2211–2215

    PubMed  Google Scholar 

  • Banti V, Giuntoli B, Gonzali S, Loreti E, Magneschi L, Novi G, Paparelli E, Parlanti S, Pucciariello C, Santaniello A, Perata P (2013) Low oxygen response mechanisms in green organisms. Int J Mol Sci 14:4734–4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyerlein I, Caro A, Demkowicz M, Mara N, Misra A, Uberuaga B (2013) Radiation damage tolerant nanomaterials. Mater Today 16:443–449

    Article  CAS  Google Scholar 

  • Borisev M, Borisev I, Zupunski M, Arsenov D, Pajevic S (2016) Drought impact is alleviated in sugar beets (beta vulgaris) by foliar application of fullerenol nanoparticles. PLoS One 11:e0166248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boroghani M, Mirnia SK, Vahhabi J, Ahmadi SJ, Charkhi A (2011) Nanozeolite synthesis and the effect of on the runoff and erosion control under rainfall simulator. Aust J Basic Appl Sci 5:1156–1164

    CAS  Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  CAS  PubMed  Google Scholar 

  • Bruna HCO, Gomes CR, Milena T, Pelegrino A, Seabra B (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19

    Article  CAS  Google Scholar 

  • Cao Z, Rossi L, Stowers C, Zhang W, Lombardini L, Ma X (2018) The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ Sci Pollut Res 25:930–939

    Article  CAS  Google Scholar 

  • Capuana M (2011) Heavy metals and woody plants biotechnologies for phytoremediation. J Biogeo Sci For 4:7–15

    Google Scholar 

  • Charpentier PA, Burgess K, Wang L, Chowdhury RR, Lotus AF, Moula G (2012) Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnol 23:425606

    Article  CAS  Google Scholar 

  • Chen H-ZZ-J, Du M-T, Han R (2011) Influence of enhanced UV-B radiation on factin in wheat division cells. Plant Diver Resour 33:306–310

    CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–13

    Article  CAS  Google Scholar 

  • Davar F, Zareii AR, Amir H (2014) Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.). Int J Adv Biol Biomed Res 2:1150–1159

    Google Scholar 

  • Derosa MR, Monreal C, Schmitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 1:193–225

    Google Scholar 

  • Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sustain Dev 37:5

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PVV (2018) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3:2479–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2012) Coping with water scarcity- an action framework for agriculture and food security. FAO water reports. FAO Publication Division, Rome

    Google Scholar 

  • Farhangi-Abriz S, Torabian S (2018) Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255:953–962

    Article  CAS  PubMed  Google Scholar 

  • Fathi A, Zahedi M, Torabian S, Khoshgoftar A (2017) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40:1376–1385

    Article  CAS  Google Scholar 

  • Gao FQ, Hong FS, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nanoanatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biol Trace Elem Res 11:239–254

    Article  Google Scholar 

  • Gao X, Zou CH, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  • Ghorbanpoura M, Farahani AHK, Hadian J (2018) Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicol Environ Saf 148:910–922

    Article  CAS  Google Scholar 

  • Gilman GP (2006) A simple device for arsenic removal from drinking water using hydrotalcite. Sci Total Environ 366:926–931

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • Gunjan B, Zaidi MGH, Sandeep A (2014) Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol 2:133

    Google Scholar 

  • Gururaj SB, Krishna BSVSR (2016) Water retention capacity of biochar blended soils. J Chem Pharm Sci 9:1438–1441

    Google Scholar 

  • Haghighi M, Afifipour Z, Mozafariyan M (2012). The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  • Haghighi M, Pourkhaloee A (2013) Nanoparticles in agricultural soils: their risks and benefits for seed germination. Minerva Biotecnol 25:123–132

    Google Scholar 

  • Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hort 178:231–240

    Article  CAS  Google Scholar 

  • Hasanpour H, Maali-Amiri R, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ J Plant Physiol 62:779–787

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress- plant responses and applications in agriculture. InTech Open Access Publisher, London, UK, pp 169–205

    Google Scholar 

  • Hatami M, Ghorbanpour M (2013) Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. J Hort Res 21:15–20

    CAS  Google Scholar 

  • Hatami M, Ghorbanpour M (2014) Defense enzyme activities and biochemical variations of Pelargonium zonale in response to nanosilver application and dark storage. Turk J Biol 38:130–139

    Article  CAS  Google Scholar 

  • Havaux M, Bonfils JP, Lutz C, Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 24:273–284

    Article  Google Scholar 

  • Heidarvand L, Maali-Amiri R, Naghavi MR, Farayedi Y, Sadeghzadeh B, Alizadeh KH (2011) Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russ J Plant Physiol 58:157–163

    Article  CAS  Google Scholar 

  • Hernandez-Hernandez H, Gonzalez-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juarez-Maldonado A (2018) Effects of chitosan–PVA and cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23:178

    Article  PubMed Central  CAS  Google Scholar 

  • Hideg E, Jansen MA, Strid A (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115

    Article  CAS  PubMed  Google Scholar 

  • Hojjat (2016) The effect of silver nanoparticle on lentil seed germination under drought stress. Int J Farm Allied Sci 5:208–212

    Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005a) Influence of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005b) Effect of nano-TiO2 on photo chemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer International Publication, Switzerland, pp 455–479

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M, Aref MI (2014) Growth, water status and leaf characteristics of Brassica carinata under drought stress and rehydration conditions. Braz J Bot 37:217–227

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429

    CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agri Food Security. 7:44

    Google Scholar 

  • Iqbal M, Srivastava PS, Siddiqi TO (2000) Anthropogenic stresses in the environment and their consequences. In: Iqbal M, Srivastava PS, Siddiqi TO (eds) Environmental hazards: plants and people. CBS Publishers, New Delhi, pp 1–38

    Google Scholar 

  • Iqbal M, Raja NI, Mashwani ZR, Hussain M, Ejaz M, Yasmeen F (2017) Effect of silver nanoparticles on growth of wheat under heat stress. Iran J Sci Technol Trans A Sci https://doi.org/10.1007/s40995-017-0417-4

  • Jaberzadeh A, Payam M, Hamid R, Tohidi M, Hossein Z (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobot Cluj-Na 41:201–207

    Article  CAS  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lith 22:53–64

    Article  Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (ocimum basilicum) under salinity stress. J Chem Health Risk 4:49–55

    CAS  Google Scholar 

  • Karami A, Sepehri A (2017) Multiwalled carbon nanotubes and nitric oxide modulate the germination and early seedling growth of barley under drought and salinity. Agric Conspec Sci 82:331–339

    Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of benefits and potential risks. Environ Health Perspect 117:1823–1831

    Article  Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2,4-dichlorophenoxyacetic acid-induced leafsenescence in mung bean (Vigna radiata (L.) Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168–217

    Article  CAS  PubMed  Google Scholar 

  • Kazemipour S, Hashemabadi D, Kaviani B (2013) Effect of silver nanoparticles on the vase life and quality of cut chrysanthemum (Chrysanthemum morifolium L.) flower. Eur J Exp Biol 3:298–302

    CAS  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Almutairi KA, Siddiqui ZH (2016) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–2019

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Ekaterina IG, Zharov VP (2011) Complex genetic, photo thermal, and photo acoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A 108:1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schust EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nano 5:436–467

    CAS  Google Scholar 

  • Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8:4766–4778

    Article  CAS  PubMed  Google Scholar 

  • Kumar M (2016) Impact of climate change on crop yield and role of model for achieving food security. Environ Monit Assess 188:465

    Article  PubMed  CAS  Google Scholar 

  • Latef AAHA, Srivastava AK, El-Sadek MSA, Kordrostami M, Tran LP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29:1065–1073

    Article  Google Scholar 

  • Laware SL, Raskar S (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol Appl Sci 3:749–760

    CAS  Google Scholar 

  • Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68–76

    Article  PubMed  CAS  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  CAS  Google Scholar 

  • Lemraski MG, Normohamadi G, Madani H, Abad HHS, Mobasser HR (2017) Two Iranian rice cultivars’ response to nitrogen and nano-fertilizer. Open J Ecol 7:591–603

    Article  Google Scholar 

  • Li T, Liu LN, Jiang CD, Liu YJ, Shi L (2014) Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. J Photochem Photobiol B Biol 137:31–38

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu YF, Qi MF, Li TL (2012) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17

    Article  CAS  PubMed  Google Scholar 

  • Lopez CJ, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582

    Article  CAS  Google Scholar 

  • Lutz C, Steevens JA (2009) Nanomaterials: risks and benefits. Springer, Dordrecht

    Google Scholar 

  • Ma H, Wallis L, Diamond S, Li S, Canas J, Cano A (2014) Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut 193:165–172

    Article  CAS  PubMed  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signalling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mahmoud EF, Abdel-Haliem HS, Hegazy NS, Hassan DMN (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289

    Article  Google Scholar 

  • Martinez-Ballesta MC, Zapata L, Chalbi N, Carvajal M (2016) Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J Nanobiotech 14:42

    Article  CAS  Google Scholar 

  • Martinez-Fernandez D, Vítkova M, Bernal MP, Komarek M (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226(101). https://doi.org/10.1007/s11270-015-2365-y

  • Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7:e30321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed EF (2017) Nanotechnology: future of environmental air pollution control. Environ Mgmt Sust Dev 6:429–454

    Article  Google Scholar 

  • Mohamed AKSH, Qayyum MF, Abdel-Hadi AM, Rehman RA, Ali S, Rizwan M (2017) Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci 63(12):1736–1747

    Google Scholar 

  • Mohammadi R, Amiri NM, Mantri L (2013a) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61:768–775

    Article  CAS  Google Scholar 

  • Mohammadi R, Amiri RM, Abbasi A (2013b) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152:403–410

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi H, Esmailpour M, Gheranpaye A (2014) Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Environ Toxicol Chem 33:2429–2437

    Article  CAS  Google Scholar 

  • Morales-Diaz AB, Ortega-Ortiz H, Juarez-Maldonado A, Cadenas-Pliego G, Gonzalez-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 013001:1–11

    Google Scholar 

  • Mozafari AA, Havas F, Ghaderi N (2018) Application of iron nanoparticles and salicylic acid in in vitro culture of strawberries (Fragaria × ananassa Duch.) to cope with drought stress. Plant Cell Tissue Organ Cult 132:511–523

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Komatsu S (2016) Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress. J Proteome Res 15:4464–4475

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015a) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteome 128:280–297

    Article  CAS  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015b) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteome 122:100–118

    Article  CAS  Google Scholar 

  • Ouzounidou G, Gaitis F (2011) The use of nano-technology in shelf life extension of green vegetables. J Innov Econ Manag 2:163–171

    Article  Google Scholar 

  • Paleg LG, Douglas TJ, van Daal A, Keech DB (1981) Proline, betaine and other organic solutes protect enzymes against heat inactivation. Aust J Plant Physiol 8:107–114

    CAS  Google Scholar 

  • Paleg LG, Stewart GR, Bradbeer JW (1984) Proline and glycine betaine influence protein solvation. Plant Physiol 75:974–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad PVV, Pisipati SR, Mom I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441

    Article  CAS  Google Scholar 

  • Prasad R, Bagde US, Varma A (2012) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11:13746–13752

    Article  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prochazkova D, Wilhelmova N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plant 51:401–406

    Article  CAS  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  CAS  PubMed  Google Scholar 

  • Qureshi MI, Abdin MZ, Ahmad J, Iqbal M (2013) Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of sweet annie (Artemisia annua L.). Phytochemistry 95:215–223

    Article  CAS  PubMed  Google Scholar 

  • Rai LC, Tyagi B, Mallick N, Rai PK (1995) Interactive effects of UV-B and copper on photosynthetic activity of the cyanobacterium Anabaena doliolum. Environ Exp Bot 35:177–185

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Regier N, Cosio C, von Moos N, Slaveykova VI (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61

    Article  CAS  PubMed  Google Scholar 

  • Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. Int J Biol Biomol Agri Food Biotechnol Engr 6:11–16

    Google Scholar 

  • Ricard B, Couee I, Raymond P, Saglio H, Saint-Ges P, Veronique B, Pradet A (1994) Plant metabolism under hypoxia and anoxia. Plant Physiol Biochem 32:1–10

    CAS  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2014) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann UMCS Biol 69:39–55

    Google Scholar 

  • Savicka M, Skute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:26–33

    Article  CAS  Google Scholar 

  • Savvasd G, Giotes D, Chatzieustratiou E, Bakea M, Patakioutad G (2009) Silicon supply in soilless cultivation of Zucchini alleviates stressinduced by salinity and powdery mildew infection. Environ Exp Bot 65:11–17

    Article  CAS  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze ED, Beck E, Muller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Uni Timisoara 16:73–78

    Google Scholar 

  • Shabnam N, Pardha-Saradhi P, Sharmila P (2014) Phenolics impart Au3+-stress tolerance to cowpea by generating nanoparticles. PLoS One 9:e85242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012a) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012b) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010a) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1–8

    Article  CAS  Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010b) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Sicard C, Perullini M, Spedalieri C, Coradin T, Brayner R, Livage J, Jobbagy M, Bilmes SA (2011) CeO2 nanoparticles for the protection of photosynthetic organisms immobilized in silica gels. Chem Mater 23:1374–1378

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nano Res Lett 11:400

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265–272

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1–14

    Article  CAS  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn, Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA

    Google Scholar 

  • Tantawy AS, Salama YAM, El-Nemr MA, Abdel-Mawgoud AMR (2015) Nano silicon application improves salinity tolerance of sweet pepper plants. Int J ChemTech Res 8:11–17

    CAS  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12:219–226

    Article  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39:172–180

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Mohan PS, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • Tulinski M, Jurczyk M (2017) Nanomaterials synthesis methods. In: Mansfield E, Kaiser DL, Fujita D, Van de Voorde M (eds) Metrology and standardization of nanotechnology: protocols and industrial innovations. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 75–98

    Chapter  Google Scholar 

  • Umar S, Moinuddin, Iqbal M (2005) Heavy metal availability, accumulation and toxicity in plants. In: Dwivedi P, Dwivedi RS (eds) Physiology of abiotic stress in plants. Agrobios (India), Jodhpur, pp 325–348

    Google Scholar 

  • Uthaichay N, Ketso S, Van Doorn WG (2007) 1-MCP pretreatment prevents bud and flower abscission in Dendrobium orchids. Postharvest Biol Technol 43:374–380

    Article  CAS  Google Scholar 

  • Vartapetian BB, Dolgikh YI, Polyakova LI, Chichkova NV, Vartapetian AB (2014) Biotechnological approaches to creation of hypoxia and anoxia tolerant plants. Acta Nat 6:19–30

    CAS  Google Scholar 

  • Wagstaff C, Chanasut U, Harren FJM, Laarhoven LJ, Thomas B, Rogers HJ, Stead AD (2005) Ethylene and flower longevity in Alstroemeria: relationship between petal senescence, abscission and ethylene biosynthesis. J Exp Bot 56:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Google Scholar 

  • Wang LJ, Guo ZM, Li TJ, Li M (2001) The nano structure SiO2 in the plants. Chin Sci Bull 46:625–631

    Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:1–10

    Google Scholar 

  • Watson JL, Fang T, Dimkpa C, Britt D, Mclean J, Jacobson A, Anderson A (2014) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals Int J Role Metal Ions Biol Biochem Med 28:101–112

    Article  CAS  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Worms IAM, Boltzman J, Garcia M, Slaveykova VI (2012) Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33

    Article  CAS  PubMed  Google Scholar 

  • Xiumei L, Fudao Z, Shuqing Z, Xusheng H, Rufang W, Zhaobin F, Yujun W (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fert Sci 11:385–389

    Google Scholar 

  • Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. Field Crops Res 152:8–16

    Article  Google Scholar 

  • Yordanova R, Popova L (2007) Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen Appl Plant Physiol 33:155–170

    CAS  Google Scholar 

  • Yousuf PY, Ahmad A, Aref IM, Ozturk M, Hemant GAH, Iqbal M (2016) Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis. Protoplasma 253:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Ahmad A, Ganie AH, Sareer O, Krishnapriya V, Aref IM, Iqbal M (2017) Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regul 81:31–50

    Article  CAS  Google Scholar 

  • Ze Y, Liu C, Wang L, Hong M, Hong F (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Ramirez AV, Zhang JY, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein and lipid peroxidation. ACS Nano 6:9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Husen, A. (2019). Role of Nanomaterials in the Mitigation of Abiotic Stress in Plants. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_18

Download citation

Publish with us

Policies and ethics