Advertisement

Plant-Assisted Fabrication of SnO2 and SnO2-Based Nanostructures for Various Applications

  • Mohammad Mansoob Khan
  • Mohammad Hilni Harunsani
  • Adedayo Rasak Adedeji
Chapter

Abstract

Fabrication of nanostructures, such as metal oxides, using a plant-assisted approach is very promising and safe for adoption in areas of biomedical applications, pollution detection, and pollutant degradation. The common methods of synthesis adopted in the past involve the use of hazardous chemicals that are not friendly to the biosphere and the living organisms. There are relatively fewer reports on the biosynthesis of SnO2 and on the recent progress with the plant-assisted synthesis of SnO2 nanostructures. This chapter presents a succinct account of the different methods of SnO2 synthesis and the various applications and performance status of the phytosynthesized SnO2 nanostructures.

Keywords

Bioactive capacity Nanostructures Photocatalyst Plant-assisted synthesis Phytosynthesis Sensors SnO2 

References

  1. Ahamed Fazil A, Udaya Bhanu J, Amutha A, Joicy S, Ponpandian N, Amirthapandian S, Panigrahi BK, Thangadurai P (2015) A facile bio-replicated synthesis of SnO2 motifs with porous surface by using pollen grains of Peltophorum pterocarpum as a template. Microporous Mesoporous Mater 212:91–99CrossRefGoogle Scholar
  2. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28CrossRefGoogle Scholar
  3. Ansari SA, Khan MM, Ansari MO, Kalathil S, Lee J, Cho MH (2014a) Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv 4:16782–16791CrossRefGoogle Scholar
  4. Ansari SA, Khan MM, Ansari MO, Lee J, Cho MH (2014b) Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO2 nanocomposites synthesized using an electrochemically active biofilm. RSC Adv 4:26013CrossRefGoogle Scholar
  5. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009CrossRefGoogle Scholar
  6. Ansari SA, Khan MM, Lee J, Cho MH (2014c) Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J Ind Eng Chem 20:1602–1607CrossRefGoogle Scholar
  7. Ansari SA, Khan MM, Omaish Ansari M, Lee J, Cho MH (2014d) Highly photoactive SnO2 nanostructures engineered by electrochemically active biofilm. New J Chem 38:2462–2469CrossRefGoogle Scholar
  8. Bhattacharjee A, Ahmaruzzaman M, Sinha T (2015) A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim Acta A Mol Biomol Spectrosc 136(Pt B):751–760CrossRefGoogle Scholar
  9. Cheng JP, Wang J, Li QQ, Liu HG, Li Y (2016) A review of recent developments in tin dioxide composites for gas sensing application. J Ind Eng Chem 44:1–22CrossRefGoogle Scholar
  10. Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Malagù C, Martinelli G (2001) Preparation and characterization of SnO2 and WOx-SnO2 nanosized powders and thick films for gas sensing. Sensors Actuators B Chem 78:89–97CrossRefGoogle Scholar
  11. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255CrossRefGoogle Scholar
  12. Diallo A, Manikandan E, Rajendran V, Maaza M (2016) Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J Alloys Compd 681:561–570CrossRefGoogle Scholar
  13. Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM (2015) Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta Part A Mol Biomol Spectrosc 145:176–180CrossRefGoogle Scholar
  14. Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol B Biol 155:34–38CrossRefGoogle Scholar
  15. Haritha E, Roopan SM, Madhavi G, Elango G, Al-Dhabi NA, Arasu MV (2016) Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. J Photochem Photobiol B Biol 162:441–447CrossRefGoogle Scholar
  16. He XH, Qi LH, Wang JB, Min-ge Y, Ming-qian S, Wei C (2011) Effect of biological template consolidation on the microstructure and properties of SnO2/C bio-morphic materials. Xinxing Tan Cailiao/New Carbon Mater 26:375–380Google Scholar
  17. Hoa ND, Van Quy N, Kim D (2009) Nanowire structured SnOx-SWNT composites: high performance sensor for NOx detection. Sensors Actuators B Chem 142:253–259CrossRefGoogle Scholar
  18. Hong G, Jiang C (2017) Synthesis of SnO2 nanoparticles using extracts from Litsea cubeba fruits. Mater Lett 194:164–167CrossRefGoogle Scholar
  19. Hu J (2015) Biosynthesis of SnO2 nanoparticles by Fig (Ficus carica) leaf extract for electrochemically determining Hg(II) in water samples. Int J Electrochem Sci 10:10668–10676Google Scholar
  20. Hyodo T, Abe S, Shimizu Y, Egashira M (2003) Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sensors Actuators B Chem 93:590–600CrossRefGoogle Scholar
  21. Kalathil S, Khan MM, Ansari SA, Lee J, Cho MH (2013) Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale 5:6323–6326CrossRefGoogle Scholar
  22. Kamaraj P, Vennila R, Arthanareeswari M, Devikala S (2014) Biological activities of tin oxide nanoparticles synthesized using plant extract. World J Pharm Pharm Sci 3:382–388Google Scholar
  23. Khan MM, Adil SF, Al-Mayouf A (2015a) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464CrossRefGoogle Scholar
  24. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644CrossRefGoogle Scholar
  25. Khan MM, Ansari SA, Khan ME, Ansari MO, Min BK, Cho MH (2015b) Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO2 nanostructures. New J Chem 39:2758–2766CrossRefGoogle Scholar
  26. Khan MM, Ansari SA, Lee J, Cho MH (2013) Enhanced optical, visible light catalytic and electrochemical properties of Au@TiO2 nanocomposites. J Ind Eng Chem 19:1845–1850CrossRefGoogle Scholar
  27. Kim BG, Lim DG, Park JH, Choi YJ, Park JG (2011) In-situ bridging of SnO2 nanowires between the electrodes and their NO2 gas sensing characteristics. Appl Surf Sci 257:4715–4718CrossRefGoogle Scholar
  28. Kumari M, Philip D (2015) Synthesis of biogenic SnO2 nanoparticles and evaluation of thermal, rheological, antibacterial and antioxidant activities. Powder Technol 270:312–319CrossRefGoogle Scholar
  29. Leo G, Rella R, Siciliano P, Capone S, Alonso JC, Pankov V, Ortiz A (1999) Sprayed SnO2 thin films for NO2 sensors. Sensors Actuators B Chem 58:370–374CrossRefGoogle Scholar
  30. Li B, Zai J, Xiao Y, Han Q, Qian X (2014) SnO2/C composites fabricated by a biotemplating method from cotton and their electrochemical performances. CrystEngComm 16:3318–3322CrossRefGoogle Scholar
  31. Manjula P, Boppella R, Manorama SV (2012) A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl Mater Interfaces 4:6252–6260CrossRefGoogle Scholar
  32. Osuntokun J, Onwudiwe DC, Ebenso EE (2017) Biosynthesis and photocatalytic properties of SnO2 nanoparticles prepared using aqueous extract of cauliflower. J Clust Sci 28:1883–1896CrossRefGoogle Scholar
  33. Roopan SM, Kumar SHS, Madhumitha G, Suthindhiran K (2015) Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl Biochem Biotechnol 175:1567–1575CrossRefGoogle Scholar
  34. Sabergharesou T, Wang T, Ju L, Radovanovic PV (2013) Electronic structure and magnetic properties of sub-3 nm diameter Mn-doped SnO2 nanocrystals and nanowires. Appl Phys Lett.  https://doi.org/10.1063/1.4813011CrossRefGoogle Scholar
  35. Saleh TA (2016) Nanomaterials for pharmaceuticals determination. Bioenergetics 5:226CrossRefGoogle Scholar
  36. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133CrossRefGoogle Scholar
  37. Shamaila S, Sajjad AKL, Ryma N, Farooqi SA, Jabeen N, Majeed S, Farooq I (2016) Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl Mater Today 5:150–199CrossRefGoogle Scholar
  38. Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599CrossRefGoogle Scholar
  39. Sinha T, Ahmaruzzaman M, Adhikari PP, Bora R (2017) Green and environmentally sustainable fabrication of Ag-SnO2 nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant agent. ACS Sustain Chem Eng 5:4645–4655CrossRefGoogle Scholar
  40. Song F, Su H, Han J, Lau WM, Moon WJ, Zhang D (2012) Bioinspired hierarchical tin oxide scaffolds for enhanced gas sensing properties. J Phys Chem C 116:10274–10281CrossRefGoogle Scholar
  41. Sudhaparimala S, Vaishnavi M (2016) Biological synthesis of nano composite SnO2- ZnO – screening for efficient photocatalytic degradation and antimicrobial activity. Mater Today Proc 3:2373–2380CrossRefGoogle Scholar
  42. Sun B, Fan T, Xu J, Zhang D (2005) Biomorphic synthesis of SnO2 microtubules on cotton fibers. Mater Lett 59:2325–2328CrossRefGoogle Scholar
  43. Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168CrossRefGoogle Scholar
  44. Tomer VK, Duhan S (2016) A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sensors Actuators B Chem 223:750–760CrossRefGoogle Scholar
  45. Vidhu VK, Philip D (2015a) Biogenic synthesis of SnO2 nanoparticles: evaluation of antibacterial and antioxidant activities. Spectrochim Acta Part A Mol Biomol Spectrosc 134:372–379CrossRefGoogle Scholar
  46. Vidhu VK, Philip D (2015b) Phytosynthesis and applications of bioactive SnO2 nanoparticles. Mater Charact 101:97–105CrossRefGoogle Scholar
  47. Xia H, Zhuang H, Zhang T, Xiao D (2008) Visible-light-activated nanocomposite photocatalyst of Fe2O3/SnO2. Mater Lett 62:1126–1128CrossRefGoogle Scholar
  48. Zhu S, Zhang D, Gu J, Jiaqiang X, Junping D, Jinlong L (2010) Biotemplate fabrication of SnO2 nanotubular materials by a sonochemical method for gas sensors. J Nanopart Res 12:1389–1400CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Mansoob Khan
    • 1
  • Mohammad Hilni Harunsani
    • 1
  • Adedayo Rasak Adedeji
    • 1
  1. 1.Chemical Sciences, Faculty of ScienceUniversiti Brunei DarussalamGadongBrunei Darussalam

Personalised recommendations