Advertisement

Abstract

Literature review of the non-destructive testing and evaluation methods and microwave and millimeter wave imaging techniques is provided. A detailed discussion and challenges for antennas are presented in this chapter.

Keywords

Understanding of non-destructive testing and evaluation Microwave imaging applications Antennas for microwave imaging Penetration depth concept Range resolution concept 

References

  1. Ahmed, S. S., Schiessl, A., Gumbmann, F., Tiebout, M., Methfessel, S., & Schmidt, L. (2012). Advanced microwave imaging. IEEE Microwave Magazine, 13, 26–43.CrossRefGoogle Scholar
  2. Akinci, M. N., Caglayan, T., Ozgur, S., Alkasi, U., Ahmadzay, H., Abbak, M., Cayoren, M., & Akduman, I. (2015). Qualitative microwave imaging with scattering parameters measurements. IEEE Transactions on Microwave Theory and Techniques, 63, 2730–2740.CrossRefGoogle Scholar
  3. Ashraf, M., Haraz, O., Sebak, A., & Alshebeili, S. (2015). Wideband compact Vivaldi antenna loaded with dielectric lens for millimeter-wave applications. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, pp. 2061–2062.Google Scholar
  4. Bai, J., Shi, S., & Prather, D. W. (2011). Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 59, 1051–1057.CrossRefGoogle Scholar
  5. Bois, K. J., Handjojo, L. F., Benally, A. D., Mubarak, K., & Zoughi, R. (1999). Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials. IEEE Transactions on Instrumentation and Measurement, 48, 1141–1148.CrossRefGoogle Scholar
  6. Bourqui, J., Okoniewski, M., & Fear, E. C. (2010). Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Transactions on Antennas and Propagation, 58, 2318–2326.CrossRefGoogle Scholar
  7. Case, J. T., Ghasr, M. T., & Zoughi, R. (2011). Optimum two-dimensional uniform spatial sampling for microwave SAR-based NDE imaging systems. IEEE Transactions on Instrumentation and Measurement, 60, 3806–3815.CrossRefGoogle Scholar
  8. De Oliveira, A. M., Perotoni, M. B., Kofuji, S. T., & Justo, J. F. (2015). A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas and Wireless Propagation Letters, 14, 1334–1337.CrossRefGoogle Scholar
  9. Ebnabbasi, K., Sczyslo, S., & Mohebbi, M. (2013). UWB performance of coplanar tapered slot antennas. IEEE Antennas and Wireless Propagation Letters, 12, 749–752.CrossRefGoogle Scholar
  10. Gazit, E. (1988). Improved design of the Vivaldi antenna. In IEE Proceedings H (Microwaves, Antennas and Propagation). IET, pp. 89–92.MathSciNetCrossRefGoogle Scholar
  11. Ghasr, M. T., Kharkovsky, S., Zoughi, R., & Austin, R. (2005). Comparison of near-field millimeter-wave probes for detecting corrosion precursor pitting under paint. IEEE Transactions on Instrumentation and Measurement, 54, 1497–1504.CrossRefGoogle Scholar
  12. Ghasr, M. T., Carroll, B., Kharkovsky, S., Austin, R., & Zoughi, R. (2006). Millimeter wave differential probe for nondestructive detection of corrosion precursor pitting. IEEE Transactions on Instrumentation and Measurement, 55, 1620–1627.CrossRefGoogle Scholar
  13. Ghasr, M. T., Abou-Khousa, M. A., Kharkovsky, S., Zoughi, R., & Pommerenke, D. (2012). Portable real-time microwave camera at 24 GHz. IEEE Transactions on Antennas and Propagation, 60, 1114–1125.CrossRefGoogle Scholar
  14. Ghasr, M. T., Kharkovsky, S., Bohnert, R., Hirst, B., & Zoughi, R. (2013). 30 GHz linear high-resolution and rapid millimeter wave imaging system for NDE. IEEE Transactions on Antennas and Propagation, 61, 4733–4740.CrossRefGoogle Scholar
  15. Gibson, P. (1979). The Vivaldi aerial. In 9th European Microwave Conference, 1979. IEEE, pp. 101–105.Google Scholar
  16. Greenberg, M. C., Virga, K. L., & Hammond, C. L. (2003). Performance characteristics of the dual exponentially tapered slot antenna (DETSA) for wireless communications applications. IEEE Transactions on Vehicular Technology, 52, 305–312.CrossRefGoogle Scholar
  17. Hatfield, S., Hillstrom, M., Schultz, D., Werckmann, T., Ghasr, M., & Donnell, K. (2013). UWB microwave imaging array for nondestructive testing applications. In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, pp. 1502–1506.Google Scholar
  18. Hughes, D., & Zoughi, R. (2005). A novel method for determination of dielectric properties of materials using a combined embedded modulated scattering and near-field microwave techniques-part I: Forward model. IEEE Transactions on Instrumentation and Measurement, 54, 2389–2397.CrossRefGoogle Scholar
  19. Juan, L., Guang, F., Lin, Y., & Demin, F. (2013). A modified balanced antipodal Vivaldi antenna with improved radiation characteristics. Microwave and Optical Technology Letters, 55, 1321–1325.CrossRefGoogle Scholar
  20. Kanjaa, M., Mrabet, O. E., Khalladi, M., & Essaaidi, M. (2015). Exponentially tapered antipodal Vivaldi antenna for breast cancer detection. In 2015 IEEE 15th Mediterranean Microwave Symposium (MMS). IEEE, pp. 1–3.Google Scholar
  21. Kharkovsky, S., & Zoughi, R. (2007). Microwave and millimeter wave nondestructive testing and evaluation-overview and recent advances. IEEE Instrumentation and Measurement Magazine, 10, 26–38.CrossRefGoogle Scholar
  22. Kharkovsky, S. N., Akay, M. F., Hasar, U. C., & ATIS, C. D. (2002). Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens. IEEE Transactions on Instrumentation and Measurement, 51, 1210–1218.CrossRefGoogle Scholar
  23. Kharkovsky, S., Case, J. T., Abou-Khousa, M. A., Zoughi, R., & Hepburn, F. L. (2006). Millimeter-wave detection of localized anomalies in the space shuttle external fuel tank insulating foam. IEEE Transactions on Instrumentation and Measurement, 55, 1250–1257.CrossRefGoogle Scholar
  24. Kharkovsky, S., Ghasr, M. T., Kam, K., Abou-Khousa, M. A., & Zoughi, R. (2013). Out-of plane fed elliptical slot array for microwave imaging. IEEE Transactions on Antennas and Propagation, 61, 5311–5314.CrossRefGoogle Scholar
  25. Klemm, M., Leendertz, J., Gibbins, D., Craddock, I. J., Preece, A., & Benjamin, R. (2010). Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios. IEEE Transactions on Antennas and Propagation, 58, 2337–2344.CrossRefGoogle Scholar
  26. Leeper, D. G. (2003). Ultrawideband-the next step in short-range wireless. In IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003. IEEE, pp. 493–496.Google Scholar
  27. Li, L., Xia, X., Liu, Y., & Yang, T. (2016). Wideband balanced antipodal Vivaldi antenna with enhanced radiation parameters. Progress in Electromagnetics Research C, 66, 163–171.CrossRefGoogle Scholar
  28. Lubecke, V. M., Boric-Lubecke, O., Host-Madsen, A., & Fathy, A. E. (2007). Through-the-wall radar life detection and monitoring. In 2007 IEEE/MTT-S International Microwave Symposium. IEEE, pp. 769–772.Google Scholar
  29. Molaei, A., Kaboli, M., Mirtaheri, S. A., & Abrishamian, M. S. (2014). Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwaves, Antennas and Propagation, 8, 1137–1142.CrossRefGoogle Scholar
  30. Moosazadeh, M., Ghobadi, C., & Dousti, M. (2010). Small monopole antenna with checkered-shaped patch for UWB application. IEEE Antennas and Wireless Propagation Letters, 9, 1014–1017.CrossRefGoogle Scholar
  31. Muqaibel, A. H., & Safaai-Jazi, A. (2003). A new formulation for characterization of materials based on measured insertion transfer function. IEEE Transactions on Microwave Theory and Techniques, 51, 1946–1951.CrossRefGoogle Scholar
  32. Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63, 3321–3324.CrossRefGoogle Scholar
  33. Natarajan, R., George, J. V., Kanagasabai, M., & Shrivastav, A. K. (2015). A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 14, 1557–1560.CrossRefGoogle Scholar
  34. Natarajan, R., George, J. V., Kanagasabai, M., Lawrance, L., Moorthy, B., Rajendran, D. B., & Alsath, M. G. N. (2016). Modified antipodal Vivaldi antenna for ultra-wideband communications. IET Microwaves, Antennas and Propagation, 10, 401–405.CrossRefGoogle Scholar
  35. Pastorino, M. (2010). Microwave imaging. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  36. Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41, 66–74.CrossRefGoogle Scholar
  37. Pozar, D. M. (2012). Microwave engineering. New York: Addison-Wesley.Google Scholar
  38. Qing, X., Chen, Z. N., & Chia, M. Y. W. (2008). Parametric study of ultra-wideband dual elliptically tapered antipodal slot antenna. International Journal of Antennas and Propagation, 2008, 267197.CrossRefGoogle Scholar
  39. Ralston, T. S., Charvat, G. L., & Peabody, J. E. (2010). Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system. In 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY). IEEE, pp. 551–558.Google Scholar
  40. Rodenbeck, C. T., Kim, S.-G., Tu, W.-H., Coutant, M. R., Hong, S., Li, M., & Chang, K. (2005). Ultra-wideband low-cost phased-array radars. IEEE Transactions on Microwave Theory and Techniques, 53, 3697–3703.CrossRefGoogle Scholar
  41. Roqueta, G., Jofre, L., & Feng, M. Q. (2012). Analysis of the electromagnetic signature of reinforced concrete structures for nondestructive evaluation of corrosion damage. IEEE Transactions on Instrumentation and Measurement, 61, 1090–1098.CrossRefGoogle Scholar
  42. Sagnard, F., & Zein, G. E. (2005). In situ characterization of building materials for propagation modeling: Frequency and time responses. IEEE Transactions on Antennas and Propagation, 53, 3166–3173.CrossRefGoogle Scholar
  43. Shaari, A., Millard, S., & Bungey, J. (2004). Modelling the propagation of a radar signal through concrete as a low-pass filter. NDT and E International, 37, 237–242.CrossRefGoogle Scholar
  44. Sheen, D. M., McMakin, D. L., & Hall, T. E. (2001). Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Transactions on Microwave Theory and Techniques, 49, 1581–1592.CrossRefGoogle Scholar
  45. Shrestha, S., Kharkovsky, S., Zoughi, R., & Hepburn, F. (2005). Microwave and millimeter wave nondestructive testing of the space shuttle external tank insulating foam. Materials Evaluation, 63, 339–344.Google Scholar
  46. Shull, P. J. (2002). Nondestructive evaluation: Theory, techniques, and applications. New York: CRC press.CrossRefGoogle Scholar
  47. Shuppert, B. (1988). Microstrip/slot-line transitions: Modeling and experimental investigation. IEEE Transactions on Microwave Theory and Techniques, 36, 1272–1282.CrossRefGoogle Scholar
  48. Yang, Y., & Fathy, A. E. (2009). Development and implementation of a real-time see-through-wall radar system based on FPGA. IEEE Transactions on Geoscience and Remote Sensing, 47, 1270–1280.CrossRefGoogle Scholar
  49. Yarovoy, A. G., Savelyev, T. G., Aubry, P. J., Lys, P. E., & Ligthart, L. P. (2007). UWB array-based sensor for near-field imaging. IEEE Transactions on Microwave Theory and Techniques, 55, 1288–1295.CrossRefGoogle Scholar
  50. Yeh, C.-Y., & Zoughi, R. (1994). A novel microwave method for detection of long surface cracks in metals. IEEE Transactions on Instrumentation and Measurement, 43, 719–725.CrossRefGoogle Scholar
  51. Ying, Q., & Dou, W. (2013). Simulation of two compact antipodal Vivaldi antennas with Radiation Characteristics enhancement. In 2013 Proceedings of the International Symposium on Antennas & Propagation (ISAP). IEEE, pp. 523–526.Google Scholar
  52. Zhuge, X., & Yarovoy, A. (2010). Design of low profile antipodal Vivaldi antenna for ultrawideband near-field imaging. In Proceedings of the Fourth European Conference on Antennas and Propagation. IEEE, pp. 1–5.Google Scholar
  53. Zhuge, X., & Yarovoy, A. G. (2011). A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Transactions on Geoscience and Remote Sensing, 49, 509–518.CrossRefGoogle Scholar
  54. Zwick, T., Wiesbeck, W., Timmermann, J., & Adamiuk, G. (2013). Ultra-wideband RF system engineering. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahdi Moosazadeh
    • 1
  1. 1.Center for Infrastructure Engineering, School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations