Advertisement

Theory and Background

  • Camilo Caraveo
  • Fevrier Valdez
  • Oscar Castillo
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In the literature there are some published works where the authors use the predatory prey mathematical model, to model problems, but the main difference of our proposal against the existing works is that we propose an optimization algorithm, which is iterative and applying evolution processes to improve the adaptation to the habitat that belongs.

References

  1. 1.
    Duffy, B., Schouten, A., & Raaijmakers, J. M. (2003). Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annual Review of Phytopathology, 41(1), 501–538.CrossRefGoogle Scholar
  2. 2.
    García-Garrido, J. M., & Ocampo, J. A. (2002). Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 53(373), 1377–1386.CrossRefGoogle Scholar
  3. 3.
    Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defense mechanisms. New Phytologist, 127(4), 617–633.CrossRefGoogle Scholar
  4. 4.
    Berryman, A. A. (1992). The origins and evolution of predator-prey theory. Ecology, 73(5), 1530–1535.CrossRefGoogle Scholar
  5. 5.
    Neyoy, H., Castillo, O., & Soria, J. (2013). Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems. Recent advances on hybrid intelligent systems (pp. 259–271). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  6. 6.
    Olivas, F., Valdez, F., & Castillo, O. (2015). Dynamic parameter adaptation in ant colony optimization using a fuzzy system for TSP problems. In IFSA-EUSFLAT (pp. 765–770).Google Scholar
  7. 7.
    Olivas, F., Valdez, F., Castillo, O., Gonzalez, C. I., Martinez, G., & Melin, P. (2017). Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Applied Soft Computing, 53, 74–87.CrossRefGoogle Scholar
  8. 8.
    Peraza, C., Valdez, F., Garcia, M., Melin, P., & Castillo, O. (2016). A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms, 9(4), 69.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pérez, J., Valdez, F., & Castillo, O. (2017). Modification of the bat algorithm using type-2 fuzzy logic for dynamical parameter adaptation. Nature-inspired design of hybrid intelligent systems (pp. 343–355). Cham: Springer International Publishing.CrossRefGoogle Scholar
  10. 10.
    Perez, J., Valdez, F., Castillo, O., & Roeva, O. (2016, September). Bat algorithm with parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In 2016 IEEE 8th International Conference on Intelligent Systems (IS) (pp. 120–127). IEEE.Google Scholar
  11. 11.
    Perez, J., Valdez, F., Castillo, O., Melin, P., Gonzalez, C., & Martinez, G. (2017). Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm. Soft Computing, 21(3), 667–685.CrossRefGoogle Scholar
  12. 12.
    Vivanco, J. M., Cosio, E., Loyola-Vargas, V. M., & Flores, H. E. (2005). Mecanismos químicos de defensa en las plantas. Investigación y ciencia, 341(2), 68–75.Google Scholar
  13. 13.
    Wang, M. B., & Metzlaff, M. (2005). RNA silencing and antiviral defense in plants. Current Opinion in Plant Biology, 8(2), 216–222.CrossRefGoogle Scholar
  14. 14.
    Pieterse, C. M., & Dicke, M. (2007). Plant interactions with microbes and insects: From molecular mechanisms to ecology. Trends in Plant Science, 12(12), 564–569.CrossRefGoogle Scholar
  15. 15.
    Song, G. C., & Ryu, C. M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. International Journal of Molecular Sciences, 14(5), 9803–9819.CrossRefGoogle Scholar
  16. 16.
    Tollsten, L., & Muller, P. M. (1996). Volatile organic compounds emitted from beech leaves. Phytochemistry, 43, 759–762.CrossRefGoogle Scholar
  17. 17.
    Molina, D., & Herrera, F. (2015, May). Iterative hybridization of DE with local search for the CEC’2015 special session on large scale global optimization. In 2015 IEEE congress on evolutionary computation (CEC) (pp. 1974–1978). IEEE.Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Camilo Caraveo
    • 1
  • Fevrier Valdez
    • 1
  • Oscar Castillo
    • 1
  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations