Advertisement

Neuroimaging Studies of Cognitive Function in Schizophrenia

  • Rafael PenadésEmail author
  • Nicolas Franck
  • Laura González-Vallespí
  • Marie Dekerle
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)

Abstract

Persons suffering from schizophrenia present cognitive impairments that have a major functional impact on their lives. Particularly, executive functions and episodic memory are consistently found to be impaired. Neuroimaging allows the investigation of affected areas of the brain associated with these impairments and, moreover, the detection of brain functioning improvements after cognitive remediation interventions. For instance, executive function impairments have been associated with prefrontal cortex volume and thickness; cognitive control impairments are correlated with an increased activation in the anterior cingulate cortex, and episodic memory impairments are linked to hippocampal reduction. Some findings suggest the presence of brain compensatory mechanisms in schizophrenia, e.g. recruiting broader cortical areas to perform identical tasks. Similarly, neuroimaging studies of cognitive remediation in schizophrenia focus differentially on structural, functional and connectivity changes. Cognitive remediation improvements have been reported in two main areas: the prefrontal and thalamic regions. It has been suggested that those changes imply a functional reorganisation of neural networks, and cognitive remediation interventions might have a neuroprotective effect. Future studies should use multimodal neuroimaging procedures and more complex theoretical models to identify, confirm and clarify these and newer outcomes. This chapter highlights neuroimaging findings in anatomical and functional brain correlates of schizophrenia, as well as its application and potential use for identifying brain changes after cognitive remediation.

Keywords

Schizophrenia Neuroimaging Functional brain correlates Cognitive remediation Hippocampus 

References

  1. 1.
    Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S et al (2004) Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 56(5):301–307PubMedGoogle Scholar
  2. 2.
    Heinrichs RW (2005) The primacy of cognition in schizophrenia. Am Psychol 60(3):229–242PubMedGoogle Scholar
  3. 3.
    Reichenberg A (2010) The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci 12:383–392PubMedGoogle Scholar
  4. 4.
    Moritz S, Klein JP, Desler T, Lill H, Gallinat J, Schneider BC (2017) Neurocognitive deficits in schizophrenia. Are we making mountains out of molehills? Psychol Med 47(15):2602–2612PubMedGoogle Scholar
  5. 5.
    Bon L, Franck N (2018) The impact of cognitive remediation on cerebral activity in schizophrenia: systematic review of the literature. Brain Behav 8(3):e00908. https://doi.org/10.1002/brb3.908PubMedPubMedCentralGoogle Scholar
  6. 6.
    Penadés R, González-Rodríguez A, Catalán R, Segura B, Bernardo M, Junqué C (2017) Neuroimaging studies of cognitive remediation in schizophrenia: a systematic and critical review. World J Psychiatry 7(1):34–43PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bora E, Murray RM (2014) Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophr Bull 40(4):744–755PubMedGoogle Scholar
  8. 8.
    Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ (2009) Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23(3):315–336PubMedGoogle Scholar
  9. 9.
    Bilder RM, Reiter G, Bates J, Lencz T, Szeszko P, Goldman RS et al (2006) Cognitive development in schizophrenia: follow-back from the first episode. J Clin Exp Neuropsychol 28(2):270–282PubMedGoogle Scholar
  10. 10.
    Goghari VM (2011) Executive functioning-related brain abnormalities associated with the genetic liability for schizophrenia: an activation likelihood estimation meta-analysis. Psychol Med 41(6):1239–1252PubMedGoogle Scholar
  11. 11.
    Stone WS, Giuliano AJ, Tsuang MT, Braff DL, Cadenhead KS, Calkins ME et al (2011) Group and site differences on the California Verbal Learning Test in persons with schizophrenia and their first-degree relatives: findings from the Consortium on the Genetics of Schizophrenia (COGS). Schizophr Res 128(1–3):102–110PubMedGoogle Scholar
  12. 12.
    Ekerholm M, Firus Waltersson S, Fagerberg T, Söderman E, Terenius L, Agartz I et al (2012) Neurocognitive function in long-term treated schizophrenia: a five-year follow-up study. Psychiatry Res 200(2–3):144–152PubMedGoogle Scholar
  13. 13.
    Fett A-KJ, Viechtbauer W, Dominguez M-G, Penn DL, van Os J, Krabbendam L (2011) The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev 35(3):573–588PubMedGoogle Scholar
  14. 14.
    Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: Version III--The final common pathway. Schizophr Bull 35(3):549–562PubMedPubMedCentralGoogle Scholar
  15. 15.
    Sugranyes G, Kyriakopoulos M, Dima D, O’Muircheartaigh J, Corrigall R, Pendelbury G et al (2012) Multimodal analyses identify linked functional and white matter abnormalities within the working memory network in schizophrenia. Schizophr Res 138(2–3):136–142PubMedPubMedCentralGoogle Scholar
  16. 16.
    Unschuld PG, Buchholz AS, Varvaris M, van Zijl PCM, Ross CA, Pekar JJ et al (2014) Prefrontal brain network connectivity indicates degree of both schizophrenia risk and cognitive dysfunctions. Schizophr Bull 40(3):653–664PubMedGoogle Scholar
  17. 17.
    Canu E, Agosta F, Filippi M (2015) A selective review of structural connectivity abnormalities of schizophrenic patients at different stages of the disease. Schizophr Res 161(1):19–28PubMedGoogle Scholar
  18. 18.
    Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex functions. Annu Rev Neurosci 24:167–202PubMedPubMedCentralGoogle Scholar
  19. 19.
    Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168PubMedGoogle Scholar
  20. 20.
    Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 41(1):49–100PubMedGoogle Scholar
  21. 21.
    Kraguljac N, Srivastava A, Lahti A (2013) Memory deficits in schizophrenia: a selective review of functional magnetic resonance imaging (fMRI) studies. Behav Sci (Basel) 3(3):330–347Google Scholar
  22. 22.
    Yuan P, Raz N (2014) Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev 42:180–192PubMedGoogle Scholar
  23. 23.
    Bonilha L, Molnar C, Horner MD, Anderson B, Forster L, George MS et al (2008) Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophr Res 101(1–3):142–151PubMedGoogle Scholar
  24. 24.
    Frascarelli M, Tognin S, Mirigliani A, Parente F, Buzzanca A, Torti MC et al (2015) Medial frontal gyrus alterations in schizophrenia: relationship with duration of illness and executive dysfunctions. Psychiatry Res Neuroimaging 231(2):103–110Google Scholar
  25. 25.
    Guo X, Li J, Wang J, Fan X, Hu M, Shen Y et al (2014) Hippocampal and orbital inferior frontal gray matter volume abnormalities and cognitive deficit in treatment-naive, first-episode patients with schizophrenia. Schizophr Res 152(2–3):339–343PubMedGoogle Scholar
  26. 26.
    Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE et al (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25(1):60–69PubMedGoogle Scholar
  27. 27.
    Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160(12):2209–2215PubMedGoogle Scholar
  28. 28.
    Barbalat G, Chambon V, Domenech PJD, Ody C, Koechlin E, Franck N et al (2011) Impaired hierarchical control within the lateral prefrontal cortex in schizophrenia. Biol Psychiatry 70(1):73–80PubMedGoogle Scholar
  29. 29.
    Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21(19):7733–7741PubMedGoogle Scholar
  30. 30.
    Wilmsmeier A, Ohrmann P, Suslow T, Siegmund A, Koelkebeck K, Rothermundt M et al (2010) Neural correlates of set-shifting: decomposing executive functions in schizophrenia. J Psychiatry Neurosci 35(5):321–329PubMedPubMedCentralGoogle Scholar
  31. 31.
    Pedersen A, Wilmsmeier A, Wiedl KH, Bauer J, Kueppers K, Koelkebeck K et al (2012) Anterior cingulate cortex activation is related to learning potential on the WCST in schizophrenia patients. Brain Cogn 79(3):245–251PubMedGoogle Scholar
  32. 32.
    Carter CS, MacDonald AW, Ross LL, Stenger VA (2001) Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. Am J Psychiatry 158(9):1423–1428PubMedGoogle Scholar
  33. 33.
    MacDonald AW, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ et al (2005) Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry 162(3):475–484PubMedGoogle Scholar
  34. 34.
    Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66(8):811–822PubMedPubMedCentralGoogle Scholar
  35. 35.
    Van Petten C (2004) Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia 42(10):1394–1413PubMedGoogle Scholar
  36. 36.
    Adriano F, Caltagirone C, Spalletta G (2012) Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist 18(2):180–200PubMedGoogle Scholar
  37. 37.
    van Erp TG, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA et al (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21(4):547–553PubMedGoogle Scholar
  38. 38.
    Guimond S, Chakravarty MM, Bergeron-Gagnon L, Patel R, Lepage M (2016) Verbal memory impairments in schizophrenia associated with cortical thinning. NeuroImage Clin 11:20–29PubMedGoogle Scholar
  39. 39.
    Antoniades M, Schoeler T, Radua J, Valli I, Allen P, Kempton MJ et al (2018) Verbal learning and hippocampal dysfunction in schizophrenia: a meta-analysis. Neurosci Biobehav Rev 86:166–175PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC (2009) Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry 166(8):863–874PubMedPubMedCentralGoogle Scholar
  41. 41.
    Murray LJ, Ranganath C (2007) The dorsolateral prefrontal cortex contributes to successful relational memory encoding. J Neurosci 27(20):5515–5522PubMedGoogle Scholar
  42. 42.
    Ragland JD, Ranganath C, Phillips J, Boudewyn MA, Kring AM, Lesh TA et al (2015) Cognitive control of episodic memory in schizophrenia: differential role of dorsolateral and ventrolateral prefrontal cortex. Front Hum Neurosci 9:604. https://doi.org/10.3389/fnhum.2015.00604PubMedPubMedCentralGoogle Scholar
  43. 43.
    Achim AM, Lepage M (2005) Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry 187:500–509PubMedGoogle Scholar
  44. 44.
    Pirnia T, Woods RP, Hamilton LS, Lyden H, Joshi SH, Asarnow RF et al (2015) Hippocampal dysfunction during declarative memory encoding in schizophrenia and effects of genetic liability. Schizophr Res 161(2–3):357–366PubMedGoogle Scholar
  45. 45.
    McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT (2007) A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry 164(12):1791–1802PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P (2011) A metaanalysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry 168(5):472–485PubMedGoogle Scholar
  47. 47.
    Wykes T (1998) What are we changing with neurocognitive rehabilitation? Illustrations from two single cases of changes in neuropsychological performance and brain systems as measured by SPECT. Schizophr Res 34(1–2):77–86PubMedGoogle Scholar
  48. 48.
    Wexler BE, Anderson M, Fulbright RK, Gore JC (2000) Preliminary evidence of improved verbal working memory performance and normalization of task-related frontal lobe activation in schizophrenia following cognitive exercises. Am J Psychiatry 157(10):1694–1697PubMedGoogle Scholar
  49. 49.
    Penadés R, Boget T, Lomeña F, Mateos JJ, Catalán R, Gastó C et al (2002) Could the hypofrontality pattern in schizophrenia be modified through neuropsychological rehabilitation? Acta Psychiatr Scand 105(3):202–208PubMedGoogle Scholar
  50. 50.
    Penadés R, Boget T, Lomeña F, Bernardo M, Mateos JJ, Laterza C et al (2000) Brain perfusion and neuropsychological changes in schizophrenic patients after cognitive rehabilitation. Psychiatry Res 98(2):127–132PubMedGoogle Scholar
  51. 51.
    Rowland LM, Griego JA, Spieker EA, Cortes CR, Holcomb HH (2010) Neural changes associated with relational learning in schizophrenia. Schizophr Bull 36(3):496–503PubMedPubMedCentralGoogle Scholar
  52. 52.
    Subramaniam K, Luks TL, Fisher M, Simpson GV, Nagarajan S, Vinogradov S (2012) Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron 73(4):842–583PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wykes T, Brammer M, Mellers J, Bray P, Reeder C, Williams C et al (2002) Effects on the brain of a psychological treatment: cognitive remediation therapy: functional magnetic resonance imaging in schizophrenia. Br J Psychiatry 181:144–152PubMedGoogle Scholar
  54. 54.
    Haut KM, Lim KO, MacDonald A (2010) Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology 35(9):1850–1859PubMedPubMedCentralGoogle Scholar
  55. 55.
    Edwards BG, Barch DM, Braver TS (2010) Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Front Hum Neurosci 4:32. https://doi.org/10.3389/fnhum.2010.00032PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bor J, Brunelin J, d’Amato T, Costes N, Suaud-Chagny MF, Saoud M et al (2011) How can cognitive remediation therapy modulate brain activations in schizophrenia? An fMRI study. Psychiatry Res 192(3):160–166PubMedGoogle Scholar
  57. 57.
    Ramsay IS, Nienow TM, Marggraf MP, MacDonald AW (2017) Neuroplastic changes in patients with schizophrenia undergoing cognitive remediation: triple-blind trial. Br J Psychiatry 210(3):216–222PubMedPubMedCentralGoogle Scholar
  58. 58.
    Subramaniam K, Luks TL, Garrett C, Chung C, Fisher M, Nagarajan S et al (2014) Intensive cognitive training in schizophrenia enhances working memory and associated prefrontal cortical efficiency in a manner that drives long-term functional gains. NeuroImage 99:281–292PubMedPubMedCentralGoogle Scholar
  59. 59.
    Vianin P, Urben S, Magistretti P, Marquet P, Fornari E, Jaugey L (2014) Increased activation in Broca’s area after cognitive remediation in schizophrenia. Psychiatry Res 221(3):204–209PubMedGoogle Scholar
  60. 60.
    Penadés R, Pujol N, Catalán R, Massana G, Rametti G, García-Rizo C et al (2013) Brain effects of cognitive remediation therapy in schizophrenia: a structural and functional neuroimaging study. Biol Psychiatry 73(10):1015–1023PubMedGoogle Scholar
  61. 61.
    Keshavan MS, Eack SM, Prasad KM, Haller CS, Cho RY (2016) Longitudinal functional brain imaging study in early course schizophrenia before and after cognitive enhancement therapy. NeuroImage 151:55–64PubMedGoogle Scholar
  62. 62.
    Eack SM, Newhill CE, Keshavan MS (2016) Cognitive enhancement therapy improves resting-state functional connectivity in early course schizophrenia. J Soc Social Work Res 7(2):211–230PubMedPubMedCentralGoogle Scholar
  63. 63.
    Eack SM, Hogarty GE, Cho RY, Prasad KM, Greenwald DP, Hogarty SS et al (2010) Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial. Arch Gen Psychiatry 67(7):674–682PubMedPubMedCentralGoogle Scholar
  64. 64.
    Morimoto T, Matsuda Y, Matsuoka K, Yasuno F, Ikebuchi E, Kameda H et al (2018) Computer-assisted cognitive remediation therapy increases hippocampal volume in patients with schizophrenia: a randomized controlled trial. BMC Psychiatry 18(1):83. doi: 10.1186/s12888-018-1667-1PubMedPubMedCentralGoogle Scholar
  65. 65.
    Penadés R, Pujol N, Catalan R, Masana G, Garcia-Rizo C, Bargallo N et al (2016) Cortical thickness in regions of frontal and temporal lobes is associated with responsiveness to cognitive remediation therapy in schizophrenia. Schizophr Res 171(1–3):110–116PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael Penadés
    • 1
    Email author
  • Nicolas Franck
    • 2
  • Laura González-Vallespí
    • 3
  • Marie Dekerle
    • 4
  1. 1.Hospital Clínic BarcelonaIDIBAPS, CIBERSAM, University of BarcelonaBarcelonaSpain
  2. 2.Centre Ressource de Réhabilitation Psychosociale et Remédiation Cognitive, UMR 5229 CNRS, Centre Hospitalier Le VinatierUniversity of LyonLyonFrance
  3. 3.Consorci Sanitari del MaresmeMataróSpain
  4. 4.Centre Ressource de Réhabilitation Psychosociale et Remédiation CognitiveLyonFrance

Personalised recommendations