Mitochondrial Involvement in Mental Disorders: Energy Metabolism and Genetic and Environmental Factors

  • Keiko IwataEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)


Mental disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ), are generally characterized by a combination of abnormal thoughts, perceptions, emotions, behavior, and relationships with others. Multiple risk factors incorporating genetic and environmental susceptibility are associated with development of these disorders. Mitochondria have a central role in the energy metabolism, and the literature suggests energy metabolism abnormalities are widespread in the brains of subjects with MDD, BPD, and SZ. Numerous studies have shown altered expressions of mitochondria-related genes in these mental disorders. In addition, environmental factors for these disorders, such as stresses, have been suggested to induce mitochondrial abnormalities. Moreover, animal studies have suggested that interactions of altered expression of mitochondria-related genes and environmental factors might be involved in mental disorders. Further investigations into interactions of mitochondrial abnormalities with environmental factors are required to elucidate of the pathogenesis of these mental disorders.


Mental disorders Mitochondria Energy metabolism Genetic factors Environmental factors 



This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, Grant No. S2603, and the Japan Foundation for Pediatric Research (to K.I.).


  1. 1.
    Uher R (2014) Gene-environment interactions in severe mental illness. Front Psych 5:48. Scholar
  2. 2.
    Jou SH, Chiu NY, Liu CS (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32:370–379PubMedGoogle Scholar
  3. 3.
    Uranova NA, Orlovskaia DD, Vikhreva OV, Zimina IS, Rakhmanova VI (2001) Morphometric study of ultrastructural changes in oligodendroglial cells in the postmortem brain in endogenous psychoses. Vestn Ross Akad Med Nauk 7:42–48Google Scholar
  4. 4.
    Kung L, Roberts RC (1999) Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 31:67–75CrossRefGoogle Scholar
  5. 5.
    Shi XF, Carlson PJ, Sung YH, Fiedler KK, Forrest LN, Hellem TL et al (2015) Decreased brain PME/PDE ratio in bipolar disorder: a preliminary (31) P magnetic resonance spectroscopy study. Bipolar Disord 17:743–752CrossRefGoogle Scholar
  6. 6.
    Reddy R, Keshavan MS (2003) Phosphorus magnetic resonance spectroscopy: its utility in examining the membrane hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 69:401–405CrossRefGoogle Scholar
  7. 7.
    Moore CM, Christensen JD, Lafer B, Fava M, Renshaw PF (1997) Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous-31 magnetic resonance spectroscopy study. Am J Psychiatry 154:116–118CrossRefGoogle Scholar
  8. 8.
    Renshaw PF, Parow AM, Hirashima F, Ke Y, Moore CM, Frederick Bde B et al (2001) Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry 158:2048–2055CrossRefGoogle Scholar
  9. 9.
    Volz HP, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B et al (1998) 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiatry Clin Neurosci 248:289–295CrossRefGoogle Scholar
  10. 10.
    Kato T, Takahashi S, Shioiri T, Inubushi T (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26:223–230CrossRefGoogle Scholar
  11. 11.
    Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF (2008) Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry 63:1127–1134CrossRefGoogle Scholar
  12. 12.
    Harper DG, Jensen JE, Ravichandran C, Perlis RH, Fava M, Renshaw PF et al (2017) Tissue type-specific bioenergetic abnormalities in adults with major depression. Neuropsychopharmacology 42:876–885CrossRefGoogle Scholar
  13. 13.
    Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276CrossRefGoogle Scholar
  14. 14.
    Steen RG, Hamer RM, Lieberman JA (2005) Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 30:1949–1962CrossRefGoogle Scholar
  15. 15.
    Yildiz-Yesiloglu A, Ankerst DP (2006) Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 30:969–995CrossRefGoogle Scholar
  16. 16.
    Caverzasi E, Pichiecchio A, Poloni GU, Calligaro A, Pasin M, Palesi F et al (2012) Magnetic resonance spectroscopy in the evaluation of treatment efficacy in unipolar major depressive disorder: a review of the literature. Funct Neurol 27:13–22PubMedPubMedCentralGoogle Scholar
  17. 17.
    Scholl M, Damian A, Engler H (2014) Fluorodeoxyglucose PET in neurology and psychiatry. PET Clin 9:371–390, v. Scholar
  18. 18.
    Videbech P (2000) PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 101:11–20CrossRefGoogle Scholar
  19. 19.
    Su L, Cai Y, Xu Y, Dutt A, Shi S, Bramon E (2014) Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 14:321. Scholar
  20. 20.
    Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM et al (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40:281–295CrossRefGoogle Scholar
  21. 21.
    Karry R, Klein E, Ben Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 55:676–684CrossRefGoogle Scholar
  22. 22.
    Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697, 643CrossRefGoogle Scholar
  23. 23.
    Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3:e3676. Scholar
  24. 24.
    Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196PubMedPubMedCentralGoogle Scholar
  25. 25.
    MacDonald ML, Naydenov A, Chu M, Matzilevich D, Konradi C (2006) Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder. Bipolar Disord 8:55–264CrossRefGoogle Scholar
  26. 26.
    Anglin RE, Mazurek MF, Tarnopolsky MA, Rosebush PI (2012) The mitochondrial genome and psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 159B:749–759CrossRefGoogle Scholar
  27. 27.
    Lopez JF, Akil H, Watson SJ (1999) Neural circuits mediating stress. Biol Psychiatry 46:1461–1471CrossRefGoogle Scholar
  28. 28.
    Masi G, Brovedani P (2011) The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 25:913–931CrossRefGoogle Scholar
  29. 29.
    Marangoni C, Hernandez M, Faedda GL (2016) The role of environmental exposures as risk factors for bipolar disorder: a systematic review of longitudinal studies. J Affect Disord 193:165–174CrossRefGoogle Scholar
  30. 30.
    van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645CrossRefGoogle Scholar
  31. 31.
    Dean K, Murray RM (2005) Environmental risk factors for psychosis. Dialogues Clin Neurosci 7:69–80PubMedPubMedCentralGoogle Scholar
  32. 32.
    Marques AH, Bjorke-Monsen AL, Teixeira AL, Silverman MN (2015) Maternal stress, nutrition and physical activity: impact on immune function, CNS development and psychopathology. Brain Res 1617:28–46CrossRefGoogle Scholar
  33. 33.
    Gomes FV, Grace AA (2017) Adolescent stress as a driving factor for schizophrenia development-a basic science perspective. Schizophr Bull 43:486–489CrossRefGoogle Scholar
  34. 34.
    Beijers R, Jansen J, Riksen-Walraven M, de Weerth C (2010) Maternal prenatal anxiety and stress predict infant illnesses and health complaints. Pediatrics 126:e401–e409. Scholar
  35. 35.
    Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, Kopinski PK et al (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A 112:E6614–E6623CrossRefGoogle Scholar
  36. 36.
    Lodge DJ, Grace AA (2011) Developmental pathology, dopamine, stress and schizophrenia. Int J Dev Neurosci 29:207–213CrossRefGoogle Scholar
  37. 37.
    Głombik K, Stachowicz A, Ślusarczyk J, Trojan E, Budziszewska B, Suski M et al (2015) Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats. Psychoneuroendocrinology 60:151–162CrossRefGoogle Scholar
  38. 38.
    Lambertini L, Chen J, Nomura Y (2015) Mitochondrial gene expression profiles are associated with maternal psychosocial stress in pregnancy and infant temperament. PLoS One 10:e0138929. Scholar
  39. 39.
    Carlin A, Alfirevic Z (2008) Physiological changes of pregnancy and monitoring. Best Pract Res Clin Obstet Gynaecol 22:801–823CrossRefGoogle Scholar
  40. 40.
    Hsiao EY, Patterson PH (2012) Placental regulation of maternal-fetal interactions and brain development. Dev Neurobiol 72:1317–1326CrossRefGoogle Scholar
  41. 41.
    Wakuda T, Iwata K, Iwata Y, Anitha A, Takahashi T, Yamada K et al (2015) Perinatal asphyxia alters neuregulin-1 and COMT gene expression in the medial prefrontal cortex in rats. Prog Neuropsychopharmacol Biol Psychiatry 56:149–154CrossRefGoogle Scholar
  42. 42.
    Paparelli A, Iwata K, Wakuda T, Iyegbe C, Murray RM, Takei N (2017) Perinatal asphyxia in rat alters expression of novel schizophrenia risk genes. Front Mol Neurosci 10:341. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Venetian Institute of Molecular MedicinePadovaItaly
  2. 2.Research Center for Child Mental DevelopmentUniversity of FukuiFukuiJapan

Personalised recommendations