Advertisement

Advances in Biomarker Studies in Autism Spectrum Disorders

  • Liming ShenEmail author
  • Yuxi Zhao
  • Huajie Zhang
  • Chengyun Feng
  • Yan Gao
  • Danqing Zhao
  • Sijian Xia
  • Qi Hong
  • Javed Iqbal
  • Xu Kun Liu
  • Fang Yao
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1118)

Abstract

Autism spectrum disorder (ASD) is a neurological and developmental condition that begins early in childhood and lasts throughout life. The epidemiology of ASD is continuously increasing all over the world with huge social and economical burdens. As the etiology of autism is not completely understood, there is still no medication available for the treatment of this disorder. However, some behavioral interventions are available to improve the core and associated symptoms of autism, particularly when initiated at an early stage. Thus, there is an increasing demand for finding biomarkers for ASD. Although diagnostic biomarkers have not yet been established, research efforts have been carried out in neuroimaging and biological analyses including genomics and gene testing, proteomics, metabolomics, transcriptomics, and studies of the immune system, inflammation, and microRNAs. Here, we will review the current progress in these fields and focus on new methods, developments, research strategies, and studies of blood-based biomarkers.

Keywords

Autism spectrum disorder Diagnosis Prediction Biomarker Proteomics 

Notes

Acknowledgments

The authors would like to acknowledge the National Natural Science Foundation of China (grant no. 31870825) and Shenzhen Bureau of Science, Technology and Information (nos. JCYJ20150402100258220, JCYJ20150529164656093, JCYJ20170412110026229) for funds to support this work.

References

  1. 1.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Washington, DC. ISBN-10: 0890425558Google Scholar
  2. 2.
    Lai M-C, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z et al (2018) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 67:1–23PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Baron-Cohen S, Scott FJ, Allison C, Williams J, Bolton P, Matthews FE et al (2009) Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry 194:500–509PubMedCrossRefGoogle Scholar
  5. 5.
    Saemundsen E, Magnússon P, Georgsdóttir I, Egilsson E, Rafnsson V (2013) Prevalence of autism spectrum disorders in an Icelandic birth cohort. BMJ Open3(6). https://doi.org/10.1136/bmjopen-2013-002748PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Russell G, Rodgers LR, Ukoumunne OC, Ford T (2014) Prevalence of parent-reported ASD and ADHD in the UK: findings from the Millennium Cohort Study. J Autism Dev Disord 44:31–40PubMedCrossRefGoogle Scholar
  7. 7.
    Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG (2015) The epidemiology and global burden of autism spectrum disorders. Psychol Med 45:601–613CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jin Z, Yang Y, Liu S, Huang H, Jin X (2018) Prevalence of DSM-5 autism spectrum disorder among school-based children aged 3-12 years in Shanghai, China. J Autism Dev Disord 48:2434–2443PubMedCrossRefGoogle Scholar
  9. 9.
    Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65:591–598PubMedCrossRefGoogle Scholar
  10. 10.
    Barger BD, Campbell JM, McDonough JD (2013) Prevalence and onset of regression within autism spectrum disorders: a meta-analytic review. J Autism Dev Disord 43:817–828PubMedCrossRefGoogle Scholar
  11. 11.
    Ozonoff S, Gangi D, Hanzel EP, Hill A, Hill MM, Miller M et al (2018) Onset patterns in autism: variation across informants, methods, and timing. Autism Res 11:788–797PubMedCrossRefGoogle Scholar
  12. 12.
    Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401PubMedCrossRefGoogle Scholar
  13. 13.
    Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B et al (2012) Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 52:2128–2141PubMedCrossRefGoogle Scholar
  14. 14.
    Kaur K, Chauhan V, Gu F, Chauhan A (2014) Bisphenol A induces oxidative stress and mitochondrial dysfunction in lymphoblasts from children with autism and unaffected siblings. Free Radic Biol Med 76:25–33PubMedCrossRefGoogle Scholar
  15. 15.
    Zachor DA (2012) Autism spectrum disorders—a syndrome on the rise: risk factors and advances in early detection and intervention. Harefuah 151:162–164 189PubMedGoogle Scholar
  16. 16.
    Dawson G (2008) Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol 20:775–803PubMedCrossRefGoogle Scholar
  17. 17.
    Brett D, Warnell F, McConachie H, Parr JR (2016) Factors affecting age at ASD diagnosis in UK: no evidence that diagnosis age has decreased between 2004 and 2014. J Autism Dev Disord 46:1974–1984PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ruggeri B, Sarkans U, Schumann G, Persico AM (2014) Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology 231:1201–1216PubMedCrossRefGoogle Scholar
  19. 19.
    Heunis T, Aldrich C, Peters JM, Jeste SS, Sahin M, Scheffer C et al (2018) Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder—a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Med 16:101. https://doi.org/10.1186/s12916-018-1086-7
  20. 20.
    Jones W, Klin A (2013) Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature 504:427–431PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Constantino JN, Kennon-McGill S, Weichselbaum C, Marrus N, Haider A, Glowinski AL et al (2017) Infant viewing of social scenes is under genetic control and is atypical in autism. Nature 547:340–344PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nyström P, Gliga T, Nilsson Jobs E, Gredebäck G, Charman T, Johnson MH et al (2018) Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood. Nat Commun 9(1):1678. https://doi.org/10.1038/s41467-018-03985-4
  23. 23.
    Bhaumik R, Pradhan A, Das S, Bhaumik DK (2018) Predicting autism spectrum disorder using domain-adaptive cross-site evaluation. Neuroinformatics 16:197–205PubMedCrossRefGoogle Scholar
  24. 24.
    Dickie EW, Ameis SH, Shahab S, Calarco N, Smith DE, Miranda D et al (2018) Personalized intrinsic network topography mapping and functional connectivity deficits in Autism Spectrum disorder. Biol Psychiatry 84:278–286PubMedCrossRefGoogle Scholar
  25. 25.
    Liu T, Liu X, Yi L, Zhu C, Markey PS, Pelowski M (2017) Assessing autism at its social and developmental roots: a review of Autism Spectrum Disorder studies using functional near-infrared spectroscopy. NeuroImage 185:955–967PubMedCrossRefGoogle Scholar
  26. 26.
    Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, Toner SK et al (2004) Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. Am J Psychiatry 161:1603–1611PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Emerson RW, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L et al (2017) Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med 9(393). https://doi.org/10.1126/scitranslmed.aag2882PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542:348–351PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ronald A, Hoekstra RA (2011) Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 156:255–274CrossRefGoogle Scholar
  30. 30.
    Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA 311:1770–1777PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB et al (2014) Most genetic risk for autism resides with common variation. Nat Genet 46:881–885PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH (2016) Advancing the understanding of autism disease mechanisms through genetics. Nat Med 22:345–361PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr, Hallmayer JF (2017) Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet 18:362–376PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Geschwind DH, State MW (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 14:1109–1120PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA et al (2013) SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism 4:36. doi: 10.1186/2040-2392-4-36PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70:898–907PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216–221PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M (2016) De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron 89:940–947PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K, Lek M et al (2017) Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet 49:504–510PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wilfert AB, Sulovari A, Turner TN, Coe BP, Eichler EE (2017) Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med 9(1):101. https://doi.org/10.1186/s13073-017-0498-xCrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Takata A, Miyake N, Tsurusaki Y, Fukai R, Miyatake S, Koshimizu E et al (2018) Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder. Cell Rep 22:734–747PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Werling DM, Brand H, An J-Y, Stone MR2, Zhu L, Glessner JT et al (2018) An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet 50:727–736PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW, Iossifov I et al (2016) Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Hum Genet 98:58–74PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Doan RN, Bae B-I, Cubelos B, Chang C, Hossain AA, Al-Saad S et al (2016) Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167:341–354.e12PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J, Maile MS et al (2018) Paternally inherited cis-regulatory structural variants are associated with autism. Science 360:327–331PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Qin L, Ma K, Wang Z-J, Hu Z, Matas E, Wei J et al (2018) Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 21:564–575PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Schaefer GB, Mendelsohn NJ, Professional Practice and Guidelines Committee (2013) Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med 15:399–407PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kalsner L, Twachtman-Bassett J, Tokarski K, Stanley C, Dumont-Mathieu T, Cotney J et al (2018) Genetic testing including targeted gene panel in a diverse clinical population of children with autism spectrum disorder: findings and implications. Mol Genet Genomic Med 6:171–185PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fernandez BA, Scherer SW (2017) Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci 19:353–371PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jiang Y-H, Wang Y, Xiu X, Choy KW, Pursley AN, Cheung SW (2014) Genetic diagnosis of autism spectrum disorders: the opportunity and challenge in the genomics era. Crit Rev Clin Lab Sci 51:249–262PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Won H, Mah W, Kim E (2013) Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 6(19). https://doi.org/10.3389/fnmol.2013.00019
  53. 53.
    Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, Zheng D et al (2017) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 8(11). https://doi.org/10.1186/s13229-017-0124-1
  54. 54.
    Wilkinson B, Grepo N, Thompson BL, Kim J, Wang K, Evgrafov OV et al (2015) The autism-associated gene chromodomain helicase DNA-binding protein 8 (CHD8) regulates noncoding RNAs and autism-related genes. Transl Psychiatry 5:e568. https://doi.org/10.1038/tp.2015.62PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM et al (2016) Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism;7:49. https://doi.org/10.1186/s13229-016-0110-z
  56. 56.
    De Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P et al (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51:418–424PubMedCrossRefGoogle Scholar
  57. 57.
    Esnafoglu E, Cırrık S, Ayyıldız SN, Erdil A, Ertürk EY, Daglı A et al (2017) Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. J Pediatr 188:240–244PubMedCrossRefGoogle Scholar
  58. 58.
    Hayashi-Takagi A, Vawter MP, Iwamoto K (2014) Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research. Biol Psychiatry 75:920–928PubMedCrossRefGoogle Scholar
  59. 59.
    Graves PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Smith LM, Kelleher NL, Consortium for Top Down Proteomics (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186–187PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587PubMedCrossRefGoogle Scholar
  62. 62.
    Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES et al (2018) How many human proteoforms are there? Nat Chem Biol 14:206–214PubMedCrossRefGoogle Scholar
  63. 63.
    Junaid MA, Kowal D, Barua M, Pullarkat PS, Sklower Brooks S et al (2004) Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am J Med Genet A 131:11–17PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Broek JA, Guest PC, Rahmoune H, Bahn S (2014) Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism 5:41. https://doi.org/10.1186/2040-2392-5-41CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P et al (2007) A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 12:292–306CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Taurines R, Dudley E, Conner AC, Grassl J, Jans T, Guderian F et al (2010) Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry. Eur Arch Psychiatry Clin Neurosci 260:249–255CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ramsey JM, Guest PC, Broek JA, Glennon JC, Rommelse N, Franke B et al (2013) Identification of an age-dependent biomarker signature in children and adolescents with autism spectrum disorders. Mol Autism 4:27. https://doi.org/10.1186/2040-2392-4-27PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Steeb H, Ramsey JM, Guest PC, Stocki P, Cooper JD, Rahmoune H et al (2014) Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome. Mol Autism 5:4. https://doi.org/10.1186/2040-2392-5-4PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M et al (2014) A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 35:2046–2054CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cortelazzo A, De Felice C, Guerranti R, Signorini C, Leoncini S, Zollo G et al (2016) Expression and oxidative modifications of plasma proteins in autism spectrum disorders: interplay between inflammatory response and lipid peroxidation. Proteomics Clin Appl 10:1103–1112PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Feng C, Chen Y, Pan J, Yang A, Niu L, Min J et al (2017) Redox proteomic identification of carbonylated proteins in autism plasma: insight into oxidative stress and its related biomarkers in autism. Clin Proteomics 14:2. https://doi.org/10.1186/s12014-017-9138-0
  72. 72.
    Shen L, Zhang K, Feng C, Chen Y, Li S, Iqbal J et al (2018) iTRAQ-based proteomic analysis reveals protein profile in plasma from children with autism. Proteomics Clin Appl 12(3):e1700085. https://doi.org/10.1002/prca.201700085CrossRefGoogle Scholar
  73. 73.
    Shen C, Zhao X, Ju W, Huo LR, Yan W, Zou JH et al (2011) A proteomic investigation of B lymphocytes in an autistic family: a pilot study of exposure to natural rubber latex (NRL) may lead to autism. J Mol Neurosci 43:443–452CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zerbo O, Yoshida C, Grether JK, Van de Water J, Ashwood P, Delorenze GN et al (2014) Neonatal cytokines and chemokines and risk of Autism Spectrum Disorder: the Early Markers for Autism (EMA) study: a case-control study. J Neuroinflammation 11:113. https://doi.org/10.1186/1742-2094-11-113PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Krakowiak P, Goines PE, Tancredi DJ, Ashwood P, Hansen RL, Hertz-Picciotto I et al (2017) Neonatal cytokine profiles associated with autism spectrum disorder. Biol Psychiatry 81:442–451PubMedCrossRefGoogle Scholar
  76. 76.
    Suganya V, Geetha A, Sujatha S (2015) Urine proteome analysis to evaluate protein biomarkers in children with autism. Clin Chim Acta 450:210–219CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Yang L, Rudser K, Golnik A, Wey A, Higgins LA, Gourley GR (2016) Urine protein biomarker candidates for autism. J Proteomics Bioinform S14:004. https://doi.org/10.4172/jpb.S14-004
  78. 78.
    Wetie AGN, Wormwood KL, Russell S, Ryan JP, Darie CC, Woods AG (2015) A pilot proteomic analysis of salivary biomarkers in autism spectrum disorder. Autism Res 8:338–350CrossRefGoogle Scholar
  79. 79.
    Wetie AGN, Wormwood KL, Charette L, Ryan JP, Woods AG, Darie CC (2015) Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with autism spectrum disorder. J Cell Mol Med 19:2664–2678CrossRefGoogle Scholar
  80. 80.
    Wei H, Ma Y, Liu J, Ding C, Hu F, Yu L (2016) Proteomic analysis of cortical brain tissue from the BTBR mouse model of autism: evidence for changes in STOP and myelin-related proteins. Neuroscience 312:26–34CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J et al (2013) Variation and genetic control of protein abundance in humans. Nature 499:79–82PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J et al (2017) Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun 8:14357PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J et al (2018) Genomic atlas of the human plasma proteome. Nature 558:73–79PubMedCrossRefGoogle Scholar
  84. 84.
    Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904PubMedCrossRefGoogle Scholar
  86. 86.
    Unwin RD, Pierce A, Watson RB, Sternberg DW, Whetton AD (2005) Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells. Mol Cell Proteomics 4:924–935PubMedCrossRefGoogle Scholar
  87. 87.
    Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C (2014) Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol Psychiatry 19:504–510PubMedCrossRefGoogle Scholar
  88. 88.
    Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (2016) Plasma proteome profiling to assess human health and disease. Cell Syst 2:185–195PubMedCrossRefGoogle Scholar
  89. 89.
    Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15:3193–3208PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Harlan R, Zhang H (2014) Targeted proteomics: a bridge between discovery and validation. Expert Rev Proteomics 11:657–661PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Andreasson U, Blennow K, Zetterberg H (2016) Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimers Dement (Amst) 3:98–102Google Scholar
  93. 93.
    Grasso G (2018) Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer’s disease: amyloid beta peptides and beyond. Mass Spectrom Rev 38(1):34–48PubMedCrossRefGoogle Scholar
  94. 94.
    Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T, Campbell TG et al (2016) The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J Lab Autom 21:533–547PubMedCrossRefGoogle Scholar
  95. 95.
    Kuwano Y, Kamio Y, Kawai T, Katsuura S, Inada N, Takaki A et al (2011) Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS One 6(9):e24723. https://doi.org/10.1371/journal.pone.0024723PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Talebizadeh Z, Aldenderfer R, Wen Chen X (2014) A proof-of-concept study: exon-level expression profiling and alternative splicing in autism using lymphoblastoid cell lines. Psychiatr Genet 24:1–9PubMedCrossRefGoogle Scholar
  97. 97.
    Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M et al (2007) Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 16:1682–1698PubMedCrossRefGoogle Scholar
  98. 98.
    Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J (2006) Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 7:118. https://doi.org/10.1186/1471-2164-7-118PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chien W-H, Gau SS-F, Chen C-H, Tsai W-C, Wu Y-Y, Chen P-H et al (2013) Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol Autism 4:23. https://doi.org/10.1186/2040-2392-4-23PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ansel A, Rosenzweig JP, Zisman PD, Melamed M, Gesundheit B (2017) Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci 10:601. https://doi.org/10.3389/fnins.2016.00601
  101. 101.
    Liu Y, Qing H, Deng Y (2014) Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 15:7865–7882PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    West PR, Amaral DG, Bais P, Smith AM, Egnash LA, Ross ME et al (2014) Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One 9:e112445. https://doi.org/10.1371/journal.pone.0112445PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wang H, Liang S, Wang M, Gao J, Sun C, Wang J et al (2016) Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci 41:27–37PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Yap IKS, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK (2010) Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 9:2996–3004PubMedCrossRefGoogle Scholar
  105. 105.
    Ming X, Stein TP, Barnes V, Rhodes N, Guo L (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11:5856–5862PubMedCrossRefGoogle Scholar
  106. 106.
    Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J et al (2015) Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res 14:5273–5282PubMedCrossRefGoogle Scholar
  107. 107.
    Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24:392–400PubMedCrossRefGoogle Scholar
  108. 108.
    Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Estes ML, McAllister AK (2016) Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–777PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81:391–401PubMedCrossRefGoogle Scholar
  111. 111.
    Chen S, Zhong X, Jiang L, Zheng X, Xiong Y, Ma S et al (2016) Maternal autoimmune diseases and the risk of autism spectrum disorders in offspring: a systematic review and meta-analysis. Behav Brain Res 296:61–69PubMedCrossRefGoogle Scholar
  112. 112.
    Patel S, Masi A, Dale RC, Whitehouse AJO, Pokorski I, Alvares GA et al (2017) Social impairments in autism spectrum disorder are related to maternal immune history profile. Mol Psychiatry 23(8):1794–1797PubMedCrossRefGoogle Scholar
  113. 113.
    Lombardo MV, Moon HM, Su J, Palmer TD, Courchesne E, Pramparo T (2018) Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol Psychiatry 23:1001–1013PubMedCrossRefGoogle Scholar
  114. 114.
    Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ (2015) Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry 20:440–446PubMedCrossRefGoogle Scholar
  115. 115.
    Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81PubMedCrossRefGoogle Scholar
  116. 116.
    Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li X-M et al (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J et al (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376PubMedCrossRefGoogle Scholar
  118. 118.
    Glatt SJ, Tsuang MT, Winn M, Chandler SD, Collins M, Lopez L et al (2012) Blood-based gene expression signatures of infants and toddlers with autism. J Am Acad Child Adolesc Psychiatry 51(9):934–44.e2. https://doi.org/10.1016/j.jaac.2012.07.007CrossRefGoogle Scholar
  119. 119.
    Felekkis K, Touvana E, Stefanou C, Deltas C (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14:236–240PubMedPubMedCentralGoogle Scholar
  120. 120.
    Cao D-D, Li L, Chan W-Y (2016) MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci 17(6):pii: E842. https://doi.org/10.3390/ijms17060842PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Hicks SD, Middleton FA (2016) A comparative review of microRNA expression patterns in autism spectrum disorder. Front Psych 7:176. https://doi.org/10.3389/fpsyt.2016.00176
  122. 122.
    Popov NT, Madjirova NP, Minkov IN, Vachev TI (2012) Micro RNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotechnol Biotechnol Equip 26:3385–3388CrossRefGoogle Scholar
  123. 123.
    Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T et al (2014) Serum microRNA profiles in children with autism. Mol Autism 5:40. https://doi.org/10.1186/2040-2392-5-40PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R et al (2015) Investigation of gene regulatory networks associated with autism spectrum disorder based on MiRNA expression in China. PLoS One 10(6):e0129052. https://doi.org/10.1371/journal.pone.0129052PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hicks SD, Ignacio C, Gentile K, Middleton FA (2016) Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 16:52. https://doi.org/10.1186/s12887-016-0586-x
  126. 126.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB et al (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11:600–607.e1. https://doi.org/10.1016/j.jalz.2014.06.008CrossRefGoogle Scholar
  128. 128.
    Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L et al (2016) Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J 30:3853–3859PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tavakolizadeh J, Roshanaei K, Salmaninejad A, Yari R, Nahand JS, Sarkarizi HK et al (2018) MicroRNAs and exosomes in depression: potential diagnostic biomarkers. J Cell Biochem 119:3783–3797PubMedCrossRefGoogle Scholar
  130. 130.
    András IE, Leda A, Contreras MG, Bertrand L, Park M, Skowronska M et al (2017) Extracellular vesicles of the blood-brain barrier: role in the HIV-1 associated amyloid beta pathology. Mol Cell Neurosci 79:12–22PubMedCrossRefGoogle Scholar
  131. 131.
    Kuwano N, Kato TA, Mitsuhashi M, Sato-Kasai M, Shimokawa N, Hayakawa K et al (2018) Neuron-related blood inflammatory markers as an objective evaluation tool for major depressive disorder: an exploratory pilot case-control study. J Affect Disord 240:88–98PubMedCrossRefGoogle Scholar
  132. 132.
    Castagnola M, Messana I, Inzitari R, Fanali C, Cabras T, Morelli A et al (2008) Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders. J Proteome Res 7:5327–5332PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Schwarz E, Guest PC, Rahmoune H, Wang L, Levin Y, Ingudomnukul E et al (2011) Sex-specific serum biomarker patterns in adults with Asperger’s syndrome. Mol Psychiatry 16:1213–1220CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Momeni N, Bergquist J, Brudin L, Behnia F, Sivberg B, Joghataei MT et al (2012) A novel blood-based biomarker for detection of autism spectrum disorders. Transl Psychiatry 2:e91. https://doi.org/10.1038/tp.2012.19PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Singh S, Yazdani U, Gadad B, Zaman S, Hynan LS, Roatch N et al (2017) Serum thyroid-stimulating hormone and interleukin-8 levels in boys with autism spectrum disorder. J Neuroinflammation 14:113. https://doi.org/10.1186/s12974-017-0888-4
  136. 136.
    Yang J, Chen Y, Xiong X, Zhou X, Han L, Ni L et al (2018) Peptidome analysis reveals novel serum biomarkers for children with autism spectrum disorder in China. Proteomics Clin Appl 12(5):e1700164. https://doi.org/10.1002/prca.201700164CrossRefGoogle Scholar
  137. 137.
    Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K et al (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30:303–311PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Voineagu I, Eapen V (2013) Converging pathways in autism spectrum disorders: interplay between synaptic dysfunction and immune responses. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2013.00738
  139. 139.
    Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T et al (2012) Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism 3:12. https://doi.org/10.1186/2040-2392-3-12PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Chow ML, Pramparo T, Winn ME, Barnes CC, Li HR, Weiss L et al (2012) Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 8(3):e1002592. https://doi.org/10.1371/journal.pgen.1002592PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP (2014) Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry 4:e460. https://doi.org/10.1038/tp.2014.87PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR (2014) Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry 4:e349. https://doi.org/10.1038/tp.2013.123PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kong S, Shimizu-Motohashi Y, Campbell M, Lee I, Collins C, Brewster S et al (2013) Peripheral blood gene expression signature differentiates children with autism from unaffected siblings. Neurogenetics 14:143–152PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ivanov H, Stoyanova V, Popov N, Bosheva M, Vachev T (2015) Blood-based gene expression in children with Autism spectrum disorder. Bio Discovery 17:e8966. doi: 10.7750/BioDiscovery.2015.17.2 Google Scholar
  145. 145.
    Gregg JP, Lit L, Baron CA, Hertz-Picciotto I, Walker W, Davis RA et al (2008) Gene expression changes in children with autism. Genomics 91:22–29PubMedCrossRefGoogle Scholar
  146. 146.
    Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN et al (2009) Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 23:124–133PubMedCrossRefGoogle Scholar
  147. 147.
    Ziats MN, Rennert OM (2013) Sex-biased gene expression in the developing brain: implications for autism spectrum disorders. Mol Autism 4:10. https://doi.org/10.1186/2040-2392-4-10PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR (2012) Brain transcriptional and epigenetic associations with autism. PLoS One 7(9):e44736. https://doi.org/10.1371/journal.pone.0044736PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kuwabara H, Yamasue H, Koike S,  Inoue H, Kawakubo Y, Kuroda M et al (2013) Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One 8:e73814. doi: 10.1371/journal.pone.0073814PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Emond P, Mavel S, Aïdoud N, Nadal-Desbarats L, Montigny F, Bonnet-Brilhault F et al (2013) GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 405:15:5291–5300PubMedCrossRefGoogle Scholar
  151. 151.
    Gevi F, Zolla L, Gabriele S, Persico AM (2016) Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 7:47. https://doi.org/10.1186/s13229-016-0109-5
  152. 152.
    El-Ansary AK, Bacha AGB, Al-Ayahdi LY (2011) Plasma fatty acids as diagnostic markers in autistic patients from Saudi Arabia. Lipids Health Dis 10:62. https://doi.org/10.1186/1476-511X-10-62PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Lv Q-Q, You C, Zou X-B, Deng H-Z (2018) Acyl-carnitine, C5DC, and C26 as potential biomarkers for diagnosis of autism spectrum disorder in children. Psychiatry Res 267:277–280PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Liming Shen
    • 1
    Email author
  • Yuxi Zhao
    • 1
  • Huajie Zhang
    • 1
  • Chengyun Feng
    • 2
  • Yan Gao
    • 2
  • Danqing Zhao
    • 3
  • Sijian Xia
    • 1
  • Qi Hong
    • 2
  • Javed Iqbal
    • 1
  • Xu Kun Liu
    • 1
  • Fang Yao
    • 1
  1. 1.College of Life Science and OceanographyShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.Maternal and Child Health Hospital of BaoanShenzhenPeople’s Republic of China
  3. 3.Department of Obstetrics and GynecologyAffiliated Hospital of Guizhou Medical UniversityGuiyangPeople’s Republic of China

Personalised recommendations