Simple Bayesian Classifier Applied to Learning

  • Byron OviedoEmail author
  • Cristian Zambrano-Vega
  • Joffre León-Acurio
  • Alina Martinez
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 895)


In this article, we propose the use of a new simple Bayesian classifier (SBND) that quickly learns a Markov boundary of the class variable and a network structure relating class variables and the said boundary. This model is compared with other Bayesian classifiers, then experimental tests are carried out for which 31 well-known ICU databases and two bases of artificial variables have been used. With these databases we compare the results obtained by such algorithms studied in the state of the art such as Naive Bayes, TAN, BAN, RPDag, CRPDag, SBND and combinations with different metrics such as K2, BIC, Akaike, BDEu. The experimental work was done in Elvira software.


Bayesian networks educational analysis Bayesian classifier Educational analysis 


  1. 1.
    Acid, S., De Campos, L., Castellano, J.: Learning Bayesian network classifiers: searching in a space of partially directed acyclic graphs. Mach. Learn. 59(3), 213–235 (2005)CrossRefGoogle Scholar
  2. 2.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheng, J., Russell, G.: Comparing Bayesian network classifiers. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 101–108. Morgan Kaufmann Publishers Inc. (1999)Google Scholar
  4. 4.
    Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)zbMATHGoogle Scholar
  5. 5.
    Elvira, C.: Elvira: an environment for probabilistic graphical models. In: Gámez, J., Salmerón, A. (eds.) Proceedings of the 1st European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)Google Scholar
  6. 6.
    Felgaer, P., Britos, P., Sicre, J., Servetto, A., García-Martínez, R., Perichinsky, G.: Optimización de redes bayesianas basada en técnicas de aprendizaje por instrucción. In: Proceedings del VIII Congreso Argentino de Ciencias de la Computación, vol. 1687 (2003)Google Scholar
  7. 7.
    Friedman, N., Michal, L., Iftach, N., Dana, P.: Using Bayesian networks to analyze expression data. Comput. Biol. 7(3–4), 601–620 (2000)CrossRefGoogle Scholar
  8. 8.
    García, F.: Modelos Bayesianos para la clasificación supervisada: aplicaciones al análisis de datos de expresión genética, Tesis Doctoral, Universidad de Granada (2009)Google Scholar
  9. 9.
    García-Martínez, R., Borrajo, D.: An integrated approach of learning, planning, and execution. J. Intell. Robot. Syst. 29(1), 47–78 (2000)CrossRefGoogle Scholar
  10. 10.
    Irani, K., Jie, C., Usama, F., Zhaogang, Q.: Applying machine learning to semiconductor manufacturing. iEEE Expert 8(1), 41–47 (1993)CrossRefGoogle Scholar
  11. 11.
    Lichman, M.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2013).
  12. 12.
    Oviedo, B., Moral, S., Puris, A.: A hierarchical clustering method: applications to educational data. Intell. Data Anal. 20(4), 933–951 (2016)CrossRefGoogle Scholar
  13. 13.
    Oviedo Bayas, B.W.: Modelos gráficos probabilisticos aplicados a la predicción del rendimiento en educación (2016)Google Scholar
  14. 14.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Webb, G.I., Pazzani, M.J.: Adjusted probability Naive Bayesian induction. In: Antoniou, G., Slaney, J. (eds.) AI 1998. LNCS, vol. 1502, pp. 285–295. Springer, Heidelberg (1998). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Engineering SciencesQuevedo State Technical UniversityQuevedoEcuador
  2. 2.Babahoyo Technical UniversityBabahoyoEcuador

Personalised recommendations