Monitoring of Small Crops for the Measurement of Environmental Factors Through the Internet of Things (IoT)

  • Jorge GomezEmail author
  • Alexander Fernandez
  • Miguel Zúñiga Sánchez
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 895)


This paper shows the development of a small crop monitoring system through the measurement of environmental factors and the use of the Internet of Things (IoT). The purpose of this research article is the deployment of a system that allows the collection of data generated by environmental factors included in crop growth. Its objective is to monitor the processes in small-scale crops, as elements that ensure the food security of certain rural populations. This system allows the collection, interaction and management of the information provided by the monitored variables. The results show that the system can present complete information of controlled environmental factors.


Small-scale crops IoT MQTT Precision agriculture Control of environmental variables Food security 



This project was funded by the University of Córdoba, with the code Nro FI-01-16. We thank Professor Teobaldis Mercado and the Department of Agronomic Engineering.


  1. 1.
    Gomez, J., Castaño, S., Mercado, T., Garcia, J., Fernández, A.: Sistema de Internet de las cosas (IoT) para el monitoreo de cultivos protegidos. Ingenieria e Innovacion 5(1), 27–36 (2017)Google Scholar
  2. 2.
    Salazar, L., Aramburu, J., Gonzalez-Flores, M., Winters, P.: Sowing for food security: a case study of smallholder famers in Bolivia. Food Policy 65, 32–52 (2016)Google Scholar
  3. 3.
    Tolon, A., Lastra, X.: La agricultura intensiva del poniente Almeriense. Diagnostico e instrumentos de gestión ambiental. Revista Electrónica de Medio ambiente 8, 18–40 (2010)Google Scholar
  4. 4.
    Altieri, M., Koohafkan, P.: Enduring Farms, 1st edn. Third World Network (TWN), Penang (2008)Google Scholar
  5. 5.
    Altieri, M., Nicholls, C.: Los impactos del cambio climatico sobre las comunidades campesinas y de agricultores tradicionales y sus respuestas adaptativas. Revista Agroecologia 3, 7–28 (2008)Google Scholar
  6. 6.
    Popovic, T., Latinovic, N., Pesic, A., Zecevic, Z., Krstajic, B., Dukanović, S.: Architecting an IoT enabled platform for precision agriculture and ecological monitoring: a case study. Comput. Electron. Agric. 140, 255–265 (2017)Google Scholar
  7. 7.
    Gómez, J., Marcillo, F., Triana, F., Gallo, V., Oviedo, B., Hernández, V.: IoT for environmental variables in urban areas. In: The 8th International Conference on Ambient Systems, Networks and Technologies (2017). Procedia Comput. Sci. 109, 67–64Google Scholar
  8. 8.
    Cama-Pinto, A., Gil-Montoya, F., Gomez-Lopez, J., Garcia-Cruz, A., Manzano-Agugliaro, F.: Sistema inalambrico de monitorizacion para cultivos en invernadero. DYNA 81(184), 164–170 (2014)Google Scholar
  9. 9.
    Sawant, S., Durbha, S.S., Jagarlapudi, A.: Interoperable agro-meteorological observation and analysis platform for precision agriculture: a case study in citrus crop water requirement estimation. Comput. Electron. Agric. 138, 175–187 (2017)Google Scholar
  10. 10.
    González-Esquiva, J.M., Oates, M.J., García- Mateos, G., Moros-Valle, B., Molina- Martínez, J.M., Ruiz-Canales, A.: Development of a visual monitoring system for water balance estimation of horticultural crops using low cost cameras. Comput. Electron. Agric. 141, 15–26 (2017)Google Scholar
  11. 11.
    Rodríguez, A., Figueredo, J.: Selection and implementation of a prototype weather station using IoT and tools Google. Actas de Ingeniería 2, 219–225 (2016)Google Scholar
  12. 12.
    García, G., et al.: Determinacion de la humedad de suelo mediante regresion lineal multiple con datos TerraSAR-X. Revista de Teledetección 46, 73–81 (2016)Google Scholar
  13. 13.
    Helsel, D., Hirsch, R.: Statistical Methods in Water Resources Techniques of Water Resources Investigations, Book 4, Chapter A3. U.S. Geological Survey, 295–297 (2002)Google Scholar
  14. 14.
    Giraldo, R.: Introducción a la Geoestadistica. Departamento de Estadistica, Universidad Nacional de Colombia, Bogota, Colombia (2002)Google Scholar
  15. 15.
    Wagle, S.: Semantic data extraction over MQTT for IoT centric wireless sensor networks. In: International Conference on Internet of Things and Applications (IOTA), vol. 26, pp. 227–232 (2016)Google Scholar
  16. 16.
    Luzuriaga, J.E., Perez, M., Boronat, P., Cano, J.C., Calafate, C., Manzoni, P.: Improving MQTT Data Delivery in Mobile Scenarios: Results from a Realistic Testbed. Mobile Information Systems (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ingenieria de SistemasUniversidad de CordobaMonteriaColombia
  2. 2.Departamento de InformaticaUniversidad Tecnica de BabahoyoBabahoyoEcuador

Personalised recommendations