On the Unfairness of Blockchain

  • Rachid Guerraoui
  • Jingjing WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11028)


The success of Bitcoin relies on the perception of a fair underlying peer-to-peer protocol: blockchain. Fairness here means that the reward (in bitcoins) given to any participant that helps maintain the consistency of the protocol by mining, is proportional to the computational power devoted by that participant to the mining task. Without such perception of fairness, honest miners might be disincentivized to maintain the protocol, leaving the space for dishonest miners to reach a majority and jeopardize the consistency of the entire system.

We prove that blockchain is unfair, even in a distributed system of only two honest miners. In a realistic setting where message delivery is not instantaneous, the ratio between the (expected) number of blocks committed by two miners is actually lower bounded by a term exponential in the product of the message delay and the difference between the two miners’ hashrates. To obtain our result, we model the growth of blockchain, which may be of independent interest. We also apply our result to explain recent empirical observations and vulnerabilities.



This work has been supported in part by the European ERC Grant 339539 - AOC.


  1. 1.
  2. 2.
    Bitcoin community: “Bitcoin”, Januray 2016.
  3. 3.
    Davidson, J.: No, big companies aren’t really accepting bitcoin. Online (2015).
  4. 4.
    McMillan, R.: IBM bets on bitcoin ledger”, February 2016.
  5. 5.
    Bitcoin community: “Proof of work”, May 2016.
  6. 6.
    Bitcoin community: “Protocol rules”, October 2016.
  7. 7.
    Felten, E.: Bitcoin research in princeton cs, Online, November 2013.
  8. 8.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). Scholar
  9. 9.
    Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. CoRR, vol. abs/1507.06183 (2015). [Online].
  10. 10.
    Bitcoin community: “Majority attack”, July 2015.
  11. 11.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). Scholar
  12. 12.
    Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. Cryptology ePrint Archive, Report 2016/454 (2016).
  13. 13.
    Eyal, I., Gencer, A.E., Sirer, E.G., Renesse, R.V.: Bitcoin-NG: a scalable blockchain protocol. In: NSDI 2016, pp. 45–59. USENIX Association (2016)Google Scholar
  14. 14.
    Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528–547. Springer, Heidelberg (2015). Scholar
  15. 15.
    Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer, Heidelberg (2015). Scholar
  16. 16.
    Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: CCS 2016, pp. 3-16. ACM, New York (2016)Google Scholar
  17. 17.
    Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: IEEE P2P2013, pp. 1–10 (2013)Google Scholar
  18. 18.
    Guerraoui, R., Wang, J.: On the unfairness of blockchain. Ecole Polytechnique Federale de Lausanne, Switzerland, Technical report (2018).
  19. 19.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2008).
  20. 20.
    Bitcoin community: “Block chain download”, January 2016.
  21. 21.
    Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). Scholar
  22. 22.
    Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). Scholar
  23. 23.
    Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: SP 2016, pp. 839–858 (2016)Google Scholar
  24. 24.
    Pass, R., Shi, E.: Fruitchains: A fair blockchain, Cryptology ePrintArchive, Report 2016/916 (2016).
  25. 25.
    Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bitcoin mining pools: a cooperative game theoretic analysis. In: AAMAS 2015, pp. 919–927 (2015). International Foundation for Autonomous Agents and Multiagent Systems, Richland (2015)Google Scholar
  26. 26.
    Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack. In: EuroS&P 2016, pp. 305–320 (2016)Google Scholar
  27. 27.
    Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: SEC 2015, pp. 129-144. USENIX Association, Berkeley (2015)Google Scholar
  28. 28.
    Natoli, C., Gramoli, V.: The blockchain anomaly. In: NCA 2016, pp. 310–317 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.École Polytechnique Fédérale de Lausanne, ICLausanneSwitzerland

Personalised recommendations