Mitochondrial Myopathies, Chronic Progressive External Ophthalmoparesis, and Kearns-Sayre Syndrome

  • Thomas KlopstockEmail author
  • Michelangelo Mancuso


Primary mitochondrial myopathies (PMM) have been defined as genetically determined disorders leading to defects of oxidative phosphorylation and affecting predominantly, but not exclusively, skeletal muscle. Manifestations lead from isolated mitochondrial myopathy to chronic progressive external ophthalmoparesis and Kearns-Sayre syndrome. In contrast to many other mitochondrial disorders, diagnosis still requires the morphological and genetic workup of a muscle biopsy which also is very helpful in differential diagnosis. The exact identification of the underlying genetic cause is a prerequisite for appropriate genetic counselling in affected families. While disease-modifying therapies are in development, many symptom management approaches including ptosis surgery are already available to improve activities of daily living and quality of life.


Primary mitochondrial myopathies (PMM) Chronic progressive external ophthalmoparesis (CPEO) Kearns-Sayre syndrome (KSS) Ptosis Ophthalmoplegia 


  1. 1.
    Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.PubMedCrossRefGoogle Scholar
  2. 2.
    Mancuso M, McFarland R, Klopstock T, Hirano M, consortium on Trial Readiness in Mitochondrial Myopathies. International Workshop: outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. Neuromuscul Disord. 2017;27(12):1126–37.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kearns TP, Sayre GP. Retinitis pigmentosa, external ophthalmoplegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA Arch Ophthalmol. 1958;60:280–9.PubMedCrossRefGoogle Scholar
  4. 4.
    von Graefe A. Verhandlungen ärztlicher Gesellschaften. Berlin Klin Wochenschr. 1856;5:125–7.Google Scholar
  5. 5.
    von Graefe A. Ein ungewoehnlicher Fall von hereditaerer Amaurose [An unusual case of hereditary amaurosis]. Arch f Ophthalmol. 1858;4:266–8.Google Scholar
  6. 6.
    Hutchinson J. On ophthalmoplegia externa or symmetrical immobility (partial) of the eyes, with ptosis. Trans R Med Clin Soc. 1879;62:307–29.Google Scholar
  7. 7.
    Kiloh LG, Nevin S. Progressive dystrophy of the external ocular muscles (ocular myopathy). Brain. 1951;74:115–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Klopstock T. Albrecht von Graefe (1828–1870). Nervenarzt. 2004;75:831.PubMedCrossRefGoogle Scholar
  9. 9.
    Berenberg RA, Pellock JM, DiMauro S, et al. Lumping or splitting? “Ophthalmoplegia-plus” or Kearns-Sayre syndrome? Ann Neurol. 1977;1(1):37–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Drachman DA. Ophthalmoplegia plus. The neurodegenerative disorders associated with progressive external ophthalmoplegia. Arch Neurol. 1968;18(6):654–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Bastiaensen LA, Joosten EM, de Rooij JA, et al. Ophthalmoplegia-plus, a real nosological entity. Acta Neurol Scand. 1978;58(1):9–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Siciliano G, Viacava P, Rossi B, Andreani D, Muratorio A, Bevilacqua G. Ocular myopathy without ophthalmoplegia can be a form of mitochondrial myopathy. Clin Neurol Neurosurg. 1992;94(2):133–41.PubMedCrossRefGoogle Scholar
  13. 13.
    McClelland C, Manousakis G, Lee MS. Progressive external ophthalmoplegia. Curr Neurol Neurosci Rep. 2016;16(6):53.PubMedCrossRefGoogle Scholar
  14. 14.
    Petty RK, Harding AE, Morgan-Hughes JA. The clinical features of mitochondrial myopathy. Brain. 1986;109(Pt 5):915–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Federico A, Minetti C, Moggio M, Mongini T, Santorelli FM, Servidei S, Tonin P, Ardissone A, Bello L, Bruno C, Ienco EC, Diodato D, Filosto M, Lamperti C, Moroni I, Musumeci O, Pegoraro E, Primiano G, Ronchi D, Rubegni A, Salvatore S, Sciacco M, Valentino ML, Vercelli L, Toscano A, Zeviani M, Siciliano G, Mancuso M. Revisiting mitochondrial ocular myopathies: a study from the Italian Network. J Neurol. 2017;264:1777–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Mancuso M, Orsucci D, Angelini C, et al. Redefining phenotypes associated with mitochondrial DNA single deletion. J Neurol. 2015;262(5):1301–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Pitceathly RD, McFarland R. Mitochondrial myopathies in adults and children: management and therapy development. Curr Opin Neurol. 2014;27(5):576–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Pfeffer G, Cote HC, Montaner JS, Li CC, Jitratkosol M, Mezei MM. Ophthalmoplegia and ptosis: mitochondrial toxicity in patients receiving HIV therapy. Neurology. 2009;73(1):71–2.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pineles SL, Demer JL, Holland GN, Ransome SS, Bonelli L, Velez FG. External ophthalmoplegia in human immunodeficiency virus-infected patients receiving antiretroviral therapy. J AAPOS. 2012;16:529–33.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fraunfelder FW, Richards AB. Diplopia, blepharoptosis, and ophthalmoplegia and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitor use. Ophthalmology. 2008;115(12):2282–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Krendel DA, Sanders DB, Massey JM. Single fiber electromyography in chronic progressive external ophthalmoplegia. Muscle Nerve. 1987;10(4):299–302.PubMedCrossRefGoogle Scholar
  22. 22.
    Strianese D. Update on Graves disease: advances in treatment of mild, moderate and severe thyroid eye disease. Curr Opin Ophthalmol. 2017;28:505–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Assaf AA. Congenital innervation dysgenesis syndrome (CID)/congenital cranial dysinnervation disorders (CCDDs). Eye (Lond). 2011;25:1251–61.CrossRefGoogle Scholar
  24. 24.
    Luigetti M, Lo Monaco M, Mirabella M, Primiano G, Lucchini M, Monforte M, Servidei S. Oculopharyngeal muscular dystrophy: clinical and neurophysiological features. Clin Neurophysiol. 2015;126(12):2406–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Jones KJ, North KN. External ophthalmoplegia in neuromuscular disorders; case report and review of the literature. Neuromuscul Disord. 1997;7:143–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Chaudhuri Z, Demer JL. Sagging eye syndrome: connective tissue involution as a cause of horizontal and vertical strabismus in older patients. JAMA Ophthalmol. 2013;131(5):619–25.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Grady JP, Campbell G, Ratnaike T, Blakely EL, Falkous G, Nesbitt V, Schaefer AM, McNally RJ, Gorman GS, Taylor RW, Turnbull DM, McFarland R. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain. 2014;137:323–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Chinnery PF, DiMauro S, Shanske S, Schon EA, Zeviani M, Mariotti C, Carrara F, Lombes A, Laforet P, Ogier H, Jaksch M, Lochmüller H, Horvath R, Deschauer M, Thorburn DR, Bindoff LA, Poulton J, Taylor RW, Matthews JN, Turnbull DM. Risk of developing a mitochondrial DNA deletion disorder. Lancet. 2004;364:592–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Lamantea E, Tiranti V, Bordoni A, et al. Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann Neurol. 2002;52(2):211–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaukonen J, Juselius JK, Tiranti V, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000;289(5480):782–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet. 2001;28(3):223–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Suomalainen A, Kaukonen J, Amati P, et al. An autosomal locus predisposing to deletions of mitochondrial DNA. Nat Genet. 1995;9(2):146–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Tyynismaa H, Ylikallio E, Patel M, Molnar MJ, Haller RG, Suomalainen A. A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am J Hum Genet. 2009;85(2):290–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ronchi D, Di Fonzo A, Lin W, et al. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet. 2013;92:293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pfeffer G, Gorman GS, Griffin H, et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain. 2014;137:1323–36.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hudson G, Amati-Bonneau P, Blakely EL, et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain. 2008;131:329–37.PubMedCrossRefGoogle Scholar
  37. 37.
    Horga A, Pitceathly RD, Blake JC, et al. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia. Brain. 2014;137(Pt 12):3200–12.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mariotti C, Savarese N, Suomalainen A, et al. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3234G mutation of mitochondrial DNA. J Neurol. 1995;242:304–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Minetti C, Moggio M, Mongini T, Servidei S, Tonin P, Toscano A, Uziel G, Bruno C, Caldarazzo Ienco E, Filosto M, Lamperti C, Martinelli D, Moroni I, Musumeci O, Pegoraro E, Ronchi D, Santorelli FM, Sauchelli D, Scarpelli M, Sciacco M, Spinazzi M, Valentino ML, Vercelli L, Zeviani M, Siciliano G. Phenotypic heterogeneity of the 8344A>G mtDNA “MERRF” mutation. Neurology. 2013;80:2049–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Lapid O, Lapid-Gortzak R, Barr J, Rosenberg L. Eyelid crutches for ptosis: a forgotten solution. Plast Reconstr Surg. 2000;106:1213–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Ahn J, Kim NJ, Choung HK, et al. Frontalis sling operation using silicone rod for the correction of ptosis in chronic progressive external ophthalmoplegia. Br J Ophthalmol. 2008;92:1685–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Tinley C, Dawson E, Lee J. The management of strabismus in patients with chronic progressive external ophthalmoplegia. Strabismus. 2010;18(2):41–7.PubMedCrossRefGoogle Scholar
  43. 43.
    St Guily JL, Perie S, Willig TN, Chaussade S, Eymard B, Angelard B. Swallowing disorders in muscular diseases: functional assessment and indications of cricopharyngeal myotomy. Ear Nose Throat J. 1994;73(1):34–40.PubMedGoogle Scholar
  44. 44.
    Pfeffer G, Chinnery PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med. 2013;45(1):4–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Kornblum C, Broicher R, Walther E, et al. Sensorineural hearing loss in patients with chronic progressive external ophthalmoplegia or Kearns-Sayre syndrome. J Neurol. 2005;252(9):1101–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Sinnathuray AR, Raut V, Awa A, Magee A, Toner JG. A review of cochlear implantation in mitochondrial sensorineural hearing loss. Otol Neurotol. 2003;24(3):418–26.PubMedCrossRefGoogle Scholar
  47. 47.
    Bresolin N, Doriguzzi C, Ponzetto C, et al. Ubidecarenone in the treatment of mitochondrial myopathies: a multi-center double-blind trial. J Neurol Sci. 1990;100:70–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Gempel K, Topaloglu H, Talim B, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130:2037–44.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Klopstock T, Querner V, Schmidt F, et al. A placebo-controlled crossover trial of creatine in mitochondrial diseases. Neurology. 2000;55:1748–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Kornblum C, Schroder R, Muller K, et al. Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol. 2005;12:300–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Gammage PA, Rorbach JF, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med. 2014;6(4):458–66.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Siegel M, Kruse S, Percival J, et al. Mitochondrial-targeted peptide rapidly improves mitochondrial energetic and skeletal muscle performance in aged mice. Aging Cell. 2013;12:763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Karaa A, Haas R, Goldstein A, Vockley J, Weaver WD, Cohen BH. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology. 2018;90:e1212–21.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurologyFriedrich-Baur-Institute, Ludwig-Maximilians-University of MunichMunichGermany
  2. 2.German Center for Neurodegenerative Diseases (DZNE)MunichGermany
  3. 3.Munich Cluster for Systems Neurology (SyNergy)MunichGermany
  4. 4.Department of Clinical and Experimental MedicineNeurological Institute, University of PisaPisaItaly

Personalised recommendations