Carcass Characteristics and Meat Quality of Deer

  • Martina P. Serrano
  • Aristide Maggiolino
  • Mirian Pateiro
  • Tomás Landete-Castillejos
  • Rubén Domínguez
  • Andrés García
  • Daniel Franco
  • Laureano Gallego
  • Pasquale De Palo
  • José Manuel LorenzoEmail author


Among meats alternative to those of traditionally farmed animals, deer has a long history in western culture as a result of being one of the main big game species. Although there is information about that it was farmed in several countries to some extent, in the last 50 years there has been an increasing trend for farming deer, in numbers raising to more than two million worldwide, mainly for meat. In addition, the unique process of annual regeneration of antlers has led to be the main animal species in traditional Chinese medicine (a medicine using all by-products of deer in countries exceeding 2,000 million people). This has highly boosted the demand of deer products and therefore, deer farming and meat production. In fact, the world trade of venison meat has steadily increased to a figure of around two million of tons annually. Deer meat is characterized by its high nutritional and sensory quality and by its positive effects on human health resulting from the low contents of intramuscular fat and cholesterol and the high contents of protein and minerals. The current knowledge about various factors (e.g. nutrition, slaughter age, sex, condition, hunting season) affecting venison and game meat has significantly increased during last decades. This chapter pretends to characterize the carcass and meat quality traits and also the main factors that influence them on deer. Because deer venison matches the idea healthy, natural meats which is in an increasing trend, and the importance for Asians, deer is likely to increase in production and rank first among non-traditional cattle species.


Deer Chemical composition Fatty acid Amino acid Mineral Sensorial quality 



The authors are grateful to Ministerio de Economía y Competitividad (Retos-Colaboración program) (Project INCYDEN, grant number RTC-2016-5327-2) for financial support for the study. Jose M. Lorenzo is member of the MARCARNE network, funded by CYTED (ref. 116RT0503). The present chapter has been edited during the visiting period of prof. José M. Lorenzo to the Department of Veterinary Medicine of Bari, granted by the University A. Moro of Bari (DR 3681 del 22/11/2017).


  1. Aidoo KE, Haworth RJP (1995) Nutritional and chemical composition of farmed venison. J Hum Nutr Diet 8(6):441–446CrossRefGoogle Scholar
  2. Albrecht E, Teuscher F, Ender K, Wegner J (2006) Growth-and breed-related changes of marbling characteristics in cattle. J Anim Sci 84(5):1067–1075PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anderson DP, Frosch BJ, Outlaw JL (2007) Economic impact of the US cervid farming industry. Agricultural and food policy centre research report 07–4, Texas A&M University. Available in
  4. Asociación Interprofesional de la Carne de Caza (ASICCAZA). Accessed 10 Sep 2018
  5. Attia YA, Al-Harthi MA, Korish MA, Shiboob MM (2015) Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market. Lipids Health Dis 14:136PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker KH, Gray HWI, Ramovs V, Mertzanidou D, Akın Pekşen Ç, Bilgin CC, Sykes N, Hoelzel AR (2017) Strong population structure in a species manipulated by humans since the Neolithic: the European fallow deer (Dama dama dama). Heredity 119:16–26PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barnier VMH, Wiklund E, van Dijk A, Smulders FJM, Malmfors G (1999) Proteolytic enzyme and inhibitor levels in reindeer (Rangifer tarandus arandus L) vs. bovine longissimus muscle, as they relate to ageing rate and response. Rangifer 19:13–18CrossRefGoogle Scholar
  8. Baron CP, Anderson HJ (2002) Myoglobin-induced lipid oxidation: a review. J Agric Food Chem 50:3887–3897PubMedCrossRefGoogle Scholar
  9. Bartoš L (2006) White Red Deer in Deer Parks Žehušice and Žleby, Central Bohemia, Czech Republic. Paper issued for participants of the 6th International Deer Biology Congress 2006 in PragueGoogle Scholar
  10. Baxter BJ, Andrews RN, Barrell GK (1999) Bone turnover associated with antler growth in red deer (Cervus elaphus). Anat Rec 256:14–19PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bonvillani A, Peña F, Domenech V, Polvillo O, García PT, Casal JJ (2010) Meat quality of Criollo Cordobes goat kids produced under extensive feeding conditions. Effects of sex and age/weight at slaughter. Span J Agric Res 8(1):116–125CrossRefGoogle Scholar
  12. Borsy A, Podani J, Stéger V, Balla B, Horváth A, Kósa JP, Gyurján I, Molnár A, Szabolcsi Z, Szabó L, Jakó E (2009) Identifying novel genes involved in both deer physiological and human pathological osteoporosis. Mol Gen Genomics 281:301–313CrossRefGoogle Scholar
  13. Bureš D, Bartoň L, Kotrba R, Hakl J (2015) Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J Sci Food Agr 95(11):2299–2306CrossRefGoogle Scholar
  14. Bykowska M, Stanisz M, Ludwiczak A, Składanowska J, Ślósarz P (2018a) Quality of meat from three muscles of farmed fallow deer (Dama dama). Anim Prod Sci 58(2):376–384CrossRefGoogle Scholar
  15. Bykowska M, Stanisz M, Ludwiczak A, Składanowska J, Ślósarz P (2018b) The effect of muscle, time post-mortem and sex on the quality of meat from fallow deer (Dama dama) farmed in Poland. Small Rumin Res 160:12–18CrossRefGoogle Scholar
  16. Cashman KD (2006) Milk minerals (including trace elements) and bone health. Int Dairy J 16:1389–1398CrossRefGoogle Scholar
  17. Cawthorn DM, Fitzhenry LB, Muchenje V, Bureš D, Kotrba R, Hoffman LC (2018) Physical quality attributes of male and female wild fallow deer (Dama dama) muscles. Meat Sci 137:168–175PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chakanda C (2016) Fatty acid composition, colour stability and lipid oxidation of mince produced from fresh and frozen/thawed fallow deer meat. Doctoral Thesis of University of Forte Hare, South AfricaGoogle Scholar
  19. Chakanda C, Arnaud E, Muchenje V, Hoffman LC (2017) Colour and oxidative stability of mince produced from fresh and frozen/thawed fallow deer (Dama dama) meat. Meat Sci 126:63–72CrossRefGoogle Scholar
  20. CIE (1976) Chemistry: official recommendations of the international commission on illuminations. Comision Internationale del’Eclairage, ParisGoogle Scholar
  21. Council Regulation EC No 149 (2008) Council regulation (EC) No 149/2008 of 29 January 2008 amending regulation (EC) no 396/2005 of the European Parliament and of the council by establishing annexes II, III and IV setting maximum residue levels for products covered by annex I thereto. Off J Eur Union 59:1–398Google Scholar
  22. Curry JW, Hohl R, Noakes TD, Kohn TA (2012) High oxidative capacity and type IIx fibre content in springbok and fallow deer skeletal muscle suggest fast sprinters with a resistance to fatigue. J Exp Biol 215(22):3997–4005PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dahlan I, Norfarizan Hanoon NA (2008) Chemical composition, palatability and physical characteristics of venison from farmed deer. J Anim Sci 79(4):498–503CrossRefGoogle Scholar
  24. Dannenberger D, Reichardt W, Danier J, Nuernberg K, Nuernberg G, Ender K (2007) Investigations on selected essential micronutrients in muscle of German pure and crossbred pigs. Fleischwirtschaft 87:90–93Google Scholar
  25. Dannenberger D, Nuernberg G, Nuernberg K, Hagemann E (2013) The effects of gender, age and region on macro-and micronutrient contents and fatty acid profiles in the muscles of roe deer and wild boar in Mecklenburg-Western Pomerania (Germany). Meat Sci 94(1):39–46PubMedPubMedCentralCrossRefGoogle Scholar
  26. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R (2012) Role of nutraceuticals in human health. J Food Sci Technol 49(2):173–183PubMedCrossRefPubMedCentralGoogle Scholar
  27. Daszkiewicz T, Janiszewski P, Kondratowicz J (2008) Changes in chemical composition of meat from roe deer (Capreolus Capreolus L.) bucks during cold storage under vacuum and modified atmosphere. Pol J Food Nutr Sci 58:331–334Google Scholar
  28. Daszkiewicz T, Janiszewski P, Wajda S (2009) Quality characteristics of meat from wild red deer (Cervus elaphus L.) hinds and stags. J Muscle Foods 20:428–448CrossRefGoogle Scholar
  29. Daszkiewicz T, Hnatyk N, Dąbrowski D, Janiszewski P, Gugołek A, Kubiak D, Śmiecińska K, Winarski R, Koba-Kowalczyk M (2015) A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama dama L.). Small Rum Res 129:77–83CrossRefGoogle Scholar
  30. De Palo P, Maggiolino A, Centoducati P, Tateo A (2012) Colour changes in meat of foals as affected by slaughtering age and post-thawing time. Asian-Australas J Anim Sci 25(12):1775–1779PubMedPubMedCentralCrossRefGoogle Scholar
  31. Domínguez R, Gómez M, Fonseca S, Lorenzo JM (2014) Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Sci 97(2):223–230PubMedCrossRefGoogle Scholar
  32. Dominik P, Saláková A, Buchtová H, Steinhauser L (2012) Quality indicators of roe deer (Capreolus capreolus L.) venison in relation to sex. Pol J Food Nutr Sci 62(3):185–191Google Scholar
  33. Drew KR (1992) Plenary lecture: venison and other deer products. In: Brown RD (ed) The biology of deer. Springer Science & Business Media, New York, pp 225–232CrossRefGoogle Scholar
  34. Dryden GM (1997) Venison in the human diet – is venison a low-fat meat? Proc Nutr Soc Australia 21:44–51Google Scholar
  35. Farouk MM, Beggan M, Hurst S, Stuart A, Dobbie P, Bekhit AED (2007) Meat quality attributes of chilled venison and beef. J Food Qual 30:1023–1039CrossRefGoogle Scholar
  36. Fiems LO, De Campeneere S, Van Caelenbergh W, De Boever JL, Vanacker JM (2003) Carcass and meat quality in double-muscled Belgian Blue bulls and cows. Meat Sci 63(3):345–352PubMedCrossRefGoogle Scholar
  37. Fletcher J (2003) Fletcher’s game: a vet’s life with Scotland’s deer. Mercat Press, EdinburghGoogle Scholar
  38. Font-i-Furnols M, Guerrero L (2014) Consumer preference, behavior and perception about meat and meat products: an overview. Meat Sci 98(3):361–371PubMedCrossRefPubMedCentralGoogle Scholar
  39. Food and Agriculture Organization Corporate Statistical Database (2017) Food and Agriculture Organization of the United Nation, Rome. Accessed 27 Aug 2018
  40. Franco D, González L, Bispo E, Rodríguez P, Garabal JI, Moreno T (2010) Study of hydrolyzed protein composition, free amino acid, and taurine content in different muscles of Galician blonde beef. J Mus Foods 21(4):769–784CrossRefGoogle Scholar
  41. Franco D, Rodríguez E, Purriños L, Crecente S, Bermúdez R, Lorenzo JM (2011) Meat quality of “Galician Mountain” foals breed. Effect of sex, slaughter age and livestock production system. Meat Sci 88(2):292–298PubMedPubMedCentralCrossRefGoogle Scholar
  42. Franco D, Lorenzo JM (2014) Effect of muscle and intensity of finishing diet on meat quality of foals slaughtered at 15 months. Meat Sci 96(1):327–334PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gálvez F, Domínguez R, Pateiro M, Carballo J, Tomasevic I, Lorenzo JM (2018) Effect of gender on breast and thigh turkey meat quality. Br Poult Sci. Scholar
  44. Gariépy C, Godbout D, Fernández X, Talmant A, Houde A (1999) The effect of RN gene on yields and quality of extended cooked cured hams. Meat Sci 52:57–64PubMedCrossRefGoogle Scholar
  45. Givens DI, Gibbs RA (2008) Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them: symposium on ‘how can the n-3 content of the diet be improved? Proc Nutr Soc 67(3):273–280CrossRefGoogle Scholar
  46. Grigor PN, Goddard PJ, Cockram MS, Rennie SC, Macdonald AJ (1997) The effects of some factors associated with transportation on the behavioural and physiological reactions of farmed red beer. Appl Anim Behav Sci 52(1–2):179–189CrossRefGoogle Scholar
  47. Gómez JA, Ceacero F, Landete-Castillejos T, Gaspar-López E, García AJ, Gallego L (2012) Factors affecting antler investment in Iberian red deer. Anim Prod Sci 52:867–873CrossRefGoogle Scholar
  48. Gómez S, García AJ, Luna S, Kierdorf U, Gallego L, Landete-Castillejos T (2013) Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus). Bone 53:506–515CrossRefGoogle Scholar
  49. Hayashida M, Souma K, Sugo K, Araki SI, Ishizaka F, Ueda M, Kasai T, Masuko T (2015) Sex and age differences in meat composition of Yeso sika deer (Cervus nippon yesoensis) reared for a short period after capture in the wild. Anim Sci J 86(2):207–213PubMedCrossRefGoogle Scholar
  50. Hoffman LC (2001) The effect of different culling methodologies on the physical meat quality attributes of various game species. In: Ebedes H, Reilly B, van Hoven W, Penzhorn B (eds), Proceedings of the 5th international wildlife ranching symposium sustainable utilization – conservation in practice. Nelson Mandela Metropolitan University, Port Elizabeth, pp 212–221Google Scholar
  51. Hoffman LC, Kritzinger B, Ferreira AV (2005) The effects of region and gender on the fatty acid, amino acid, mineral, myoglobin and collagen contents of Impala (Aepyceros melampus) meat. Meat Sci 69:551–558PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hoffman LC, Wiklund E (2006) Game and venison – meat for the modern consumer. Meat Sci 74(1):197–208PubMedCrossRefGoogle Scholar
  53. Hoffman LC, Kroucamp M, Manley M (2007) Meat quality characteristics of springbok (Antidorcas marsupialis). 2: chemical composition of springbok meat as influenced by age, gender and production region. Meat Sci 76(4):762–767PubMedCrossRefGoogle Scholar
  54. Hoffman LC, Mostert AC, Kidd M, Laubscher LL (2009) Meat quality of kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus): carcass yield, physical quality and chemical composition of kudu and impala longissimus dorsi muscle as affected by gender and age. Meat Sci 83:788–795PubMedCrossRefGoogle Scholar
  55. Hoffman LC, Cawthorn DM (2013) Exotic protein sources to meet all needs. Meat Sci 95:764–771.PubMedCrossRefGoogle Scholar
  56. Hunt MR, Legako JF, Dinh TTN, Garmyn AJ, O'quinn TG, Corbin CH, Rathmann RJ, Brooks JC, Miller MF (2016) Assessment of volatile compounds, neutral and polar lipid fatty acids of four beef muscles from USDA choice and select graded carcasses and their relationships with consumer palatability scores and intramuscular fat content. Meat Sci 116:91–101PubMedCrossRefGoogle Scholar
  57. Hutchison C, Mulley R, Wiklund E, Flesch J (2010) Consumer evaluation of venison sensory quality: effects of sex, body condition score and carcase suspension method. Meat Sci 86(2):311–316PubMedCrossRefGoogle Scholar
  58. Hutchison CL, Mulley RC, Wiklund E, Flesch JS (2012) Effect of concentrate feeding on instrumental meat quality and sensory characteristics of fallow deer venison. Meat Sci 90(3):801–806PubMedCrossRefGoogle Scholar
  59. Hutchison C, Mulley R, Wiklund E, Flesch J, Sims K (2014) Effect of pelvic suspension on the instrumental meat quality characteristics of red deer (Cervus elaphus) and fallow deer (Dama dama) venison. Meat Sci 98(2):104–109PubMedCrossRefGoogle Scholar
  60. Jago JG, Harcourt RG, Matthews LR (1997) The effect of road-type and distance transported on behaviour, physiology and carcass quality of farmed red deer (Cervus elaphus). Appl Anim Behav Sci 51(1–2):129–141CrossRefGoogle Scholar
  61. Jandásek J, Kracmar S, Milerski M, Ingr I (2003) Comparison of the contents of intramuscular amino acids in different lamb hybrids. Cz J Anim Sci 48(7):301–306Google Scholar
  62. Janiszewski P, Dmuchowski B, Gugołek A, Żełobowski R (2008) Body weight characteristics of farm-raised fallow deer (Dama dama L.) over the winter period. J Cent Eur Agr 9(2):337–342Google Scholar
  63. Janiszewski P, Zawacka M, Folborski J, Lewandowska E (2016) Carcass quality of European roe deer (Capreolus capreolus) from forest and field hunting grounds. Pol J Nat Sci 31(2):169–178Google Scholar
  64. Johnson PL, Purchas RW, McEwan JC, Blair HT (2005) Carcass composition and meat quality differences between pasture-reared ewe and ram lambs. Meat Sci 71(2):383–391PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kim SW, Kim KW, Park SB, Kim MJ, Yim DG (2015) The effect of castration time on growth and carcass production of elk bulls. J Anim Sci Technol 57:39–43PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kim KW, Park HS, Lee SS, Yeon SH, Cho CY, Kim SW, Lee J (2017) Effects of different feeding regimes on deer meat (venison) quality following chilled storage condition. Korean J Food Sci Anim Resour 37(4):511PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kohn TA, Curry JW, Noakes TD (2011) Black wildebeest skeletal muscle exhibits high oxidative capacity and a high proportion of type IIx fibres. J Exp Biol 214(23):4041–4047PubMedCrossRefGoogle Scholar
  68. Kotrba R, Bartoš L (2010) Survey on deer farming in Europe. Federation of European Deer Farmers Association (FEDFA).
  69. Kritzinger B, Hoffman LC, Ferreira AV (2004) A comparison between the effects of two cropping methods on the meat quality of impala (Aepyceros melampus). South Afr J Anim Sci 33(4):233–241Google Scholar
  70. Kudrnáčová E, Bartoň L, Bureš D, Hoffman LC (2018) Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): a review. Meat Sci 141:9–27PubMedCrossRefGoogle Scholar
  71. Landete-Castillejos T, García A, Gallego L (2001) Calf growth in captive Iberian red deer (Cervus elaphus hispanicus): effects of birth date and hind milk production and composition. J Anim Sci 79(5):1085–1092PubMedCrossRefGoogle Scholar
  72. Landete-Castillejos T, Gallego L, Estévez JA, García AJ, Fierro Y (2010) Fencing of game estates in Spain considered as management unit. In: Chapman HG, Hecker K (eds) Enclosures: a dead-end? Influence on game biology, conservation and hunting. International Council for Game and Wildlife Conservation – CIC, Sopron, pp 68–79Google Scholar
  73. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n−3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79(6):935–945PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lorenzo JM, Pateiro M (2013) Influence of type of muscles on nutritional value of foal meat. Meat Sci 93(3):630–638PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lorenzo JM, Pateiro M, Franco D (2013) Influence of muscle type on physicochemical and sensory properties of foal meat. Meat Sci 94(1):77–83PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lorenzo JM, Sarriés MV, Tateo A, Polidori P, Franco D, Lanza M (2014) Carcass characteristics, meat quality and nutritional value of horsemeat: a review. Meat Sci 96(4):1478–1488PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lorenzo JM, Maggiolino A, Gallego L, Pateiro M, Serrano MP, Domínguez R, Diaz A, Landete‐Castillejos T, De Palo P (2018) Effect of slaughter age on nutritional properties of Iberian wild red deer meat. J Sci Food Agri.
  78. Ludwiczak A, Stanisz M, Bykowska M, Składanowska J, Ślósarz P (2017) Effect of storage on quality traits of the semimembranosus muscle of farmed fallow deer (Dama dama) bucks and does. Anim Sci J 88:1149–1155PubMedCrossRefPubMedCentralGoogle Scholar
  79. Maggiolino A, Pateiro M, Serrano MP, Landete-Castillejos T, Domínguez R, García A, Gallego L, De Palo P, Lorenzo JM (2018) Carcass and meat quality characteristics from Iberian wild red deer (Cervus elaphus) hunted at different ages. J Sci Food Agric.
  80. Mahecha L, Nuernberg K, Nuernberg G, Ender K, Hagemann E, Dannenberger D (2009) Effects of diet and storage on fatty acid profile, micronutrients and quality of muscle from German Simmental bulls. Meat Sci 82(3):365–371PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mancini RA, Hunt M (2005) Current research in meat color. Meat Sci 71(1):100–121PubMedPubMedCentralCrossRefGoogle Scholar
  82. MAPAMA (Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente) (2016) Avance anuario de estadística forestal 2015. Available in
  83. Mortensen M, Andersen HJ, Engelsen SB, Bertram HC (2006) Effect of freezing temperature, thawing and cooking rate on water distribution in two pork qualities. Meat Sci 72:34–42PubMedCrossRefPubMedCentralGoogle Scholar
  84. New Zealand Deer Industry (2018) At a glance industry statistics. Accessed 30 Ago 2018
  85. Nuernberg K, Dannenberger D, Nuernberg G, Ender K, Voigt J, Scollan ND, Wood JD, Nute GR, Richardson RI (2005) Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Liv Prod Sci 94(1–2):137–147CrossRefGoogle Scholar
  86. Okuskhanova E, Assenova B, Rebezov M, Amirkhanov K, Yessimbekov Z, Smolnikova F, Nurgazezova A, Nurymkhan G, Stuart M (2017) Study of morphology, chemical, and amino acid composition of red deer meat. Vet World 10(6):623–629PubMedPubMedCentralCrossRefGoogle Scholar
  87. Onyango CA, Izumimoto M, Kutima PM (1998) Comparison of some physical and chemical properties of selected game meats. Meat Sci 49:117–125PubMedCrossRefPubMedCentralGoogle Scholar
  88. Pethick DW, Hopkins DL, D’Souza DN, Thompson JM, Walker PJ (2005) Effects of animal age on the eating quality of sheep meat. Austr J Exp Agri 45(5):491–498CrossRefGoogle Scholar
  89. Pettigrew JE, Esnaola MA (2001) Swine nutrition and pork quality: a review. J Anim Sci 79(E Suppl):E316–E342CrossRefGoogle Scholar
  90. Phillip LE, Oresanya TF, Jacques JS (2007) Fatty acid profile, carcass traits and growth rate of red deer fed diets varying in the ratio of concentrate: dried and pelleted roughage, and raised for venison production. Small Rum Res 71(1–3):215–221 volpeCrossRefGoogle Scholar
  91. Piaskowska N, Daszkiewicz T, Kubiak D, Janiszewski P (2015) The effect of gender on meat (Longissimus Lumborum muscle) quality characteristics in the fallow deer Dama dama L. Ital J Anim Sci 14(3):38–45CrossRefGoogle Scholar
  92. Piaskowska N, Daszkiewicz T, Kubiak D, Zapotoczny P (2016) Quality of meat (Longissimus dorsi) from male fallow deer (Dama dama) packaged and stored under vacuum and modified atmosphere conditions. Asian Australas J Anim Sci 29(12):1782–1789PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pinto F, Tarricone S, Marsico G, Forcelli MG (2009) Nutritional quality of meats from young fallow deer (Dama dama) of different ages. Progr Nutr 11(1):57–68Google Scholar
  94. Polak T, Rajar A, Gašperlin L, Žlender B (2008) Cholesterol concentration and fatty acid profile of red deer (Cervus elaphus) meat. Meat Sci 80(3):864–869PubMedCrossRefPubMedCentralGoogle Scholar
  95. Poławska E, Cooper RG, Jóźwik A, Pomianowski J (2013) Meat from alternative species–nutritive and dietetic value, and its benefit for human health–a review. CyTA-J Food 11(1):37–42CrossRefGoogle Scholar
  96. Pollard JC, Stevenson-Barry JM, Littlejohn RP (1999) Factors affecting behaviour, bruising and pH in a deer slaughter premises. Proc N Z Soc Anim Prod 59:148–151Google Scholar
  97. Pollard JC, Littlejohn RP, Asher GW, Pearse AJT, Stevenson-Barry JM, McGregor SK, Manley TR, Duncan SJ, Sutton CM, Pollock KL, Prescott J (2002) A comparison of biochemical and meat quality variables in red deer (Cervus elaphus) following either slaughter at pasture or killing at a deer slaughter plant. Meat Sci 60(1):85–94PubMedCrossRefPubMedCentralGoogle Scholar
  98. Pösö AR, Heiskari U, Lindström M, Nieminen M, Soveri T (2001) Muscle fibre growth in undernourished reindeer calves (Rangifer tarandus tarandus L.) during winter. Comp Biochem Physiol A Mol Integr Physiol 129:495–500CrossRefGoogle Scholar
  99. Postolache AN, Boişteanu PC, Lazăr R (2011) Red deer meat (Cervus elaphus L.): between hunting and necessity. Lucrări Ştiinţifice Seria Zootehnie 56:265–269Google Scholar
  100. Purchas RW, Triumf EC, Egelandsdal B (2010) Quality characteristics and composition of the longissimus muscle in the short-loin from male and female farmed red deer in New Zealand. Meat Sci 86(2):505–510PubMedCrossRefPubMedCentralGoogle Scholar
  101. QDMA (Quality Deer Management Association) (2016) QDMA’s Whitetail Report 2016: an annual report on the status of white-tailed deer – the foundation of the hunting industry in North America. Available in
  102. Quaresma MAG, Trigo-Rodrigues I, Alves SP, Martins SIV, Barreto AS, Bessa RJB (2012) Nutritional evaluation of the lipid fraction of Iberian red deer (Cervus elaphus hispanicus) tenderloin. Meat Sci 92(4):519–524PubMedCrossRefPubMedCentralGoogle Scholar
  103. Ramanzin M, Amici A, Casoli C, Espósito L, Lupi P, Marsico G, Mattiello S, Olivieri O, Ponzetta MP, Russo C, Marinucci MT (2010) Meat from wild ungulates: ensuring quality and hygiene of an increasing resource. Ital J Anim Sci 9(3):318–331Google Scholar
  104. Rehbinder C (1990) Management stress in reindeer. Rangifer 10(3):267–288CrossRefGoogle Scholar
  105. Reinken G (1998) Erzeugung und handel von wild- un hirschfleisch in Europa. Z Jagdwiss 44:167–177Google Scholar
  106. Rincker PJ, Bechtel PJ, Finstad G, van Buuren RGC, Killefer J, McKeith FK (2006) Similarities and differences in composition and selected sensory attributes of reindeer, caribou and beef. J Muscle Foods 17:65–78CrossRefGoogle Scholar
  107. Robertson WM, Schaefer AL, Fortin A, Landry S, Lacombe AAFC (2000) Meat yield and quality: factors affecting venison yield and quality. Canadian Meat Science Association. Available in
  108. Rodbotten M, Kubberod E, Lea P, Ueland O (2004) A sensory map of the meat universe. Sensory profile of meat from 15 species. Meat Sci 68:137–144PubMedCrossRefPubMedCentralGoogle Scholar
  109. Rose DP (1997) Dietary fatty acids and prevention of hormone-responsive cancer. Exp Biol Med 216(2):224–233CrossRefGoogle Scholar
  110. Serrano MP, Valencia DG, Nieto M, Lázaro R, Mateos GG (2008a) Influence of sex and terminal sire line on performance and carcass and meat quality of Iberian pigs reared under intensive production systems. Meat Sci 78:420–428PubMedCrossRefPubMedCentralGoogle Scholar
  111. Serrano MP, Valencia DG, Fuentetaja A, Lázaro R, Mateos GG (2008b) Effect of gender and castration of females and slaughter weight on performance and carcass and meat quality of Iberian pigs reared under intensive management systems. Meat Sci 80:1122–1128PubMedCrossRefPubMedCentralGoogle Scholar
  112. Serrano MP, Maggiolino A, Lorenzo JM, De Palo P, García A, Landete-Castillejos T, Gambín P, Cappelli J, Domínguez R, Pérez-Barbería FJ, Gallego L (2018) Meat quality of farmed red deer fed a balanced diet: effects of supplementation with copper bolus on different muscles. Animal 23:1–9CrossRefGoogle Scholar
  113. Serrano MP, De Palo P, Maggiolino A, Pateiro M, Gallego L, Domínguez R, García A, Landete-Castillejos T, Lorenzo JM (unpublished data) Hunting period influences on carcass characteristics, meat quality and nutritional value of Iberian wild red deer. J Sci Food Agric (sent)Google Scholar
  114. Sims KL, Wiklund E, Hutchison CL, Mulley RC, Littlejohn RP (2004) Effects of pelvic suspension on the tenderness of meat from fallow deer (Dama dama). In: Proc. 50th Int. Congr. Meat Sci.Technol., Helsinki, Finland. p. 119Google Scholar
  115. Skog A, Zachos FE, Rueness EK, Feulner PGD, Mysterud A, Langvatn R, Lorenzini R, Hmwe SS, Lehoczky I, Hartl GB, Stenseth NC (2009) Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr 36:66–77CrossRefGoogle Scholar
  116. Smith R, Dobson H (1990) Effect of preslaughter experience on behaviour, plasma cortisol and muscle pH in farmed red deer. Vet Rec 126(7):155–158PubMedPubMedCentralGoogle Scholar
  117. Šnirc M, Kral M, Ošťádalová M, Golian J, Tremlová B (2017) Application of principal component analysis method for characterization chemical, technological, and textural parameters of farmed and pastured red deer. Int J Food Prop 20(4):754–761CrossRefGoogle Scholar
  118. Sookhareea R, Taylor DG, Dryden GM, Woodford KB (2001) Primal joints and hind-leg cuts of entire and castrated Javan rusa (Cervus timorensis russa) stags. Meat Sci 58:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  119. Stanisz M, Ludwiczak A, Buda P, Pietrzak M, Bykowska M, Kryza A, Ślósarz P (2015) The effect of sex on the dressing percentage, carcass, and organ quality in the fallow deer (Dama dama). Ann Anim Sci 15(4):1055–1067CrossRefGoogle Scholar
  120. Stevenson-Barry J, Duncan S, Littlejohn R (1999) Venison vitamin E levels and the relationship between vitamin E, iron and copper and display life for venison and beef. In: Proc 45th Int Congr Meat Sci Technol, Yokohama, Japan, p 458Google Scholar
  121. Strazdina V, Jemeljanovs A, Sterna V, Vjazavica J (2011) Evaluation of protein composition of game meat in Latvian farms and wildlife. Agron Res 9:469–472Google Scholar
  122. Suttie JM, Webster JR (1998) Are arctic ungulates physiologically unique? Rangifer 18:99–118CrossRefGoogle Scholar
  123. Sui A, Zhang L, Huo Y, Zhang Y (2014) Bioactive components of velvet antlers and their pharmacological properties. J Pharm Biomed Anal 87:229–240PubMedCrossRefPubMedCentralGoogle Scholar
  124. Swedish National Food Agency (2014) Nutritional analyses of reindeer and red deer venison, lamb and beef. Available in
  125. Tateo A, De Palo P, Maggiolino A, Centoducati P (2013) Post-thawing colour changes in meat of foals as affected by feeding level and post-thawing time. Arch Anim Breed 56(1):293–302CrossRefGoogle Scholar
  126. Taylor RG, Labasa R, Smulders FJM, Wiklund E (2002) Ultrastructural changes during aging in M. longissimus thoracis from moose and reindeer. Meat Sci 60:321–326PubMedCrossRefPubMedCentralGoogle Scholar
  127. Terry PD, Rohan TE, Wolk A (2003) Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence. Am J Clin Nutr 77(3):532–543PubMedCrossRefPubMedCentralGoogle Scholar
  128. Torrescano G, Sánchez A, Begonim B, Roncal P, Beltrán J (2003) Shear values of raw samples of 14 bovine muscles and their relation to muscle collagen. Meat Sci. 64:85–91Google Scholar
  129. Volpelli LA, Valusso R, Piasentier E (2002) Carcass quality in male fallow deer (Dama dama): effects of age and supplementary feeding. Meat Sci 60:427–432PubMedCrossRefPubMedCentralGoogle Scholar
  130. Volpelli LA, Valusso R, Morgante M, Pittia P, Piasentier E (2003) Meat quality in male fallow deer (Dama dama): effects of age and supplementary feeding. Meat Sci 65(1):555–562PubMedCrossRefPubMedCentralGoogle Scholar
  131. WHO (2017) The top 10 causes of death. Facts sheet updated January 2017. Available in
  132. Wiklund E, Andersson A, Malmfors G, Lundström K, Danell Ö (1995) Ultimate pH values in reindeer meat with particular regard to animal sex and age, muscle and transport distance. Rangifer 15(2):47–54CrossRefGoogle Scholar
  133. Wiklund E, Barnier VMH, Smulders FJM, Lundström K, Malmfors G (1997) Pro-teolysis and tenderisation in reindeer (Rangifer tarandus tarandus L.) bull longissimus thoracis muscle of various ultimate pH. Meat Sci 46:33–43PubMedCrossRefGoogle Scholar
  134. Wiklund E, Manley TR, Littlejohn RP, Stevenson-Barry JM (2003) Fatty acid composition and sensory quality of Musculus longissimus and carcass parameters in red deer (Cervus elaphus) grazed on natural pasture or fed a commercial feed mixture. J Sci Food Agri 83(5):419–424CrossRefGoogle Scholar
  135. Wiklund E, Manley TR, Littlejohn RP (2004) Glycolytic potential and ultimate muscle pH values in red deer (Cervus elaphus) and fallow deer (Dama dama). Rangifer 24(2):87–94CrossRefGoogle Scholar
  136. Wiklund E, Asher GW, Archer JA, Ward JF, Littlejohn R (2008) Carcass and meat quality characteristics in young red deer stags of different growth rates. Proc New Zealand Soc Anim Prod 68:174–177Google Scholar
  137. Wiklund E, Dobbie P, Stuart A, Littlejohn R (2010) Seasonal variation in red deer (Cervus elaphus) venison (M. longissimus dorsi) drip loss, calpain activity, colour and tenderness. Meat Sci 86(3):720–727PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wiklund E, Farouk M, Finstad G (2014) Venison: meat from red deer (Cervus elaphus) and reindeer (Pangifer tarandus tarandus). Animal Front 4(4):55–61CrossRefGoogle Scholar
  139. Williams CD, Whitley BM, Hoyo C, Grant DJ, Iraggi JD, Newman KA, Gerber L, Taylor LA, McKeever MG, Freddland SJ (2011) A high ratio of dietary n-6/n-3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutr Res 31(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  140. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Whittington FM (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78(4):343–358PubMedPubMedCentralCrossRefGoogle Scholar
  141. Young O, West J (2001) Meat colour. In: Hui YH, Nip WK, Rogers R, Young O (eds) Meat science and applications. Marcel Dekker, New York, p 39CrossRefGoogle Scholar
  142. Zarkadas CG, Marshall WD, Khalili AD, Nguyen Q, Zarkadas GC, Karatzas CN, Khanizadeh S (1987) Mineral composition of selected bovine, porcine and avian muscles, and meat products. J Food Sci 52(3):520–525CrossRefGoogle Scholar
  143. Żochowska-Kujawska J, Sobczak M, Lachowicz K (2009) Comparison of the texture, rheological properties and myofibre characteristics of SM (semimembranosus) muscles of selected species of game animals. Pol J Food Nutr Sci 59(3):243–246Google Scholar
  144. Zomborszky Z, Szentmihalyi G, Sarudi I, Horn P, Szabo CS (1996) Nutrient composition of muscles in deer and boar. J Food Sci 61(3):625–627CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martina P. Serrano
    • 1
    • 2
    • 3
  • Aristide Maggiolino
    • 4
  • Mirian Pateiro
    • 5
  • Tomás Landete-Castillejos
    • 1
    • 2
    • 3
  • Rubén Domínguez
    • 5
  • Andrés García
    • 1
    • 2
    • 3
  • Daniel Franco
    • 5
  • Laureano Gallego
    • 1
    • 2
    • 3
  • Pasquale De Palo
    • 4
  • José Manuel Lorenzo
    • 5
    Email author
  1. 1.Animal Science Techniques Applied to Wildlife Management Research GroupInstituto de Investigación en Recursos Cinegéticos, Albacete Section of CSIC-UCLM-JCCM, Universidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Sección de Recursos Cinegéticos y GanaderosInstituto de Desarrollo Regional of Universidad de Castilla-La ManchaAlbaceteSpain
  3. 3.Departamento de Ciencia y Tecnología Agroforestal y GenéticaEscuela Técnica Superior de Ingenieros Agrónomos y Montes of Universidad de Castilla-La ManchaAlbaceteSpain
  4. 4.Department of Veterinary MedicineUniversity of Bari A. MoroValenzanoItaly
  5. 5.Centro Tecnológico de la Carne de Galicia, Rúa Galicia 4, Parque Tecnológico de GaliciaOurenseSpain

Personalised recommendations