Advertisement

Carcass Traits and Meat Quality of Rabbit, Hare, Guinea Pig and Capybara

  • Antonella Dalle ZotteEmail author
  • Marco Cullere
Chapter

Abstract

There are a number of meat-producing animals, generally classified as unconventional, which have a specific historical background of farming and consumption tradition in some areas of the world. In the perspective of a growing world population and consequent rising meat request, these species have been gaining new attention as useful alternatives to alleviate food insecurity, be exploited in intensive production systems for everyday consumption, and be sold in niche markets for high-income consumers and/or for those paying special attention to the healthiness and the image of the food. In this context, the present chapter deals with some unconventional meat species which already have, or might have in the future, a potential for one of more of the above-mentioned-markets. The focus will be on two Lagomorphs, the European rabbit and the European hare, and on two Rodents species, the guinea pig and the capybara. For these animal species, a brief introduction to contextualize their meaning as meat-producers will be provided, then the existing knowledge about their carcass characteristics and meat quality features will be outlined as well as on those factors that can influence them.

Keywords

Lagomorphs Rodents European rabbit European hare Capybara Guinea pig 

References

  1. Adu E, Patterson R, Rojas F et al (2005) Chapter 17: Grasscutters, guinea pigs, and rabbits. In: Owen EA, Kitalyi A, Jayasuriya A, Smith T (eds) Livestock and wealth creation: improving the husbandry of animals kept by resource-poor people in developing countries. Nottingham University Press, Nottingham, pp 29–52Google Scholar
  2. Alvarez MR, Kravetz FO (2006) Reproductive performance of capybaras (Hydrochoerus hydrochaeris) in captivity under different management systems in Argentina. Anim Res 55:153–164CrossRefGoogle Scholar
  3. Alvarez MR (2011) Criação em cativeiro de capivaras na Venezuela. Rev Bras Zootecn 40:44–47Google Scholar
  4. Andrade PCM, Lavorenti A, Nogueira-Filho SLG (1998) Efeitos do tamanho de área, da dieta e da idade inicial de confinamento sobre capivaras (Hydrochoerus hydrochaeris hydrochaeris L. 1766) em crescimento. Rev Bras Zootecn 27:292–299Google Scholar
  5. ANSES (2011) Actualisation des Apports Nutritionnels Conseillés pour les acides gras 1–327Google Scholar
  6. Apráez-Guerrero JE, Fernández-Pármo L, Hernández-González A (2008) Effect of the usage of grasses and non conventional feeds on the productive behavior, carcass performance and meat quality of Guinea pigs (Cavia porcellus). Vet Zootec 2:29–34Google Scholar
  7. Ara G, Jiménez R, Huamán A et al (2012) Desarollo de un índice de condición corporal en cuyes relaciones entre condición corporal y estimados cuantitativos de grasa corporal [Body condition score development in guinea pigs: relationship between body condition score and quantitative estimates of body fat]. Rev Inv Vet Perú 23:420–428Google Scholar
  8. Baldizan AR, Dixon E, Parra YR (1983) Digestion in the capybara (Hydrochoerus hydrochaeris). S Afr J Anim Sci 13:27–28Google Scholar
  9. Bernardini Battaglini M, Castellini C, Lattaioli P (1995) Effect of sire strain, feeding, age and sex on rabbit carcass. World Rabbit Sci 3:9–14Google Scholar
  10. Beynen AC, Van Manen DG, Verstegen MWA (1990) Dietray fat level and carcass quality of rabbits. J Appl Rabbit Res 12:266–267Google Scholar
  11. Bianchi M, Petracci M, Cavani C (2009) The influence of linseed on rabbit meat quality. World Rabbit Sci 17:97–107Google Scholar
  12. Blasco A, Ouhayoun J (1993) Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci 4:93–99Google Scholar
  13. Bressan MC, Oda SHI, Cardoso MG et al (2004b) Fat acids composition of the capybara (Hydrochaeris hydrochaeris L. 1766) commercial cuts. Ciênc. Agrotec 28:1352–1359CrossRefGoogle Scholar
  14. Bressan MC, Jardim NS, Perez JRO et al (2004a) Influência do sexo e faixas de peso ao abate nas características físico-químicas da carne de capivara. Ciênc Tecnol Aliment 24:357–362CrossRefGoogle Scholar
  15. Burgos-Paz W, Cerón-Muñoz M, Solarte-Portilla C (2011) Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, caviidae) in Colombia. Genet Mol Biol 34:711–718PubMedPubMedCentralCrossRefGoogle Scholar
  16. Camino JM, Hidalgo VL (2014) Evaluation of two genotypes of Guinea pigs (Cavia porcellus) fed with concentrated and exclusion of forage. Rev Inv Vet Perú 25:190–197Google Scholar
  17. Cardinali R, Cullere M, Dal Bosco A et al (2015) Oregano, rosemary and vitamin E dietary supplementation in growing rabbits: effect on growth performance, carcass traits, bone development and meat chemical composition. Livest Sci 175:83–89CrossRefGoogle Scholar
  18. Celia C, Cullere M, Gerencsér Zs et al (2016) Effect of pre- and post-weaning dietary supplementation with Digestarom® herbal formulation on rabbit carcass traits and meat quality. Meat Sci 118:89–95PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chauca L (1995) Producción de cuyes (Cavia porcellus) en los Paises Andinos. World Anim Rev 83:9–19Google Scholar
  20. Chiericato GM, Rizzi C, Rostellato V (1993) Effect of genotype and environmental temperature on the performance of the young meat rabbit. World Rabbit Sci 1:119–125Google Scholar
  21. Chupin D (1995) Rearing unconventional livestock species: a flourishing activity. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  22. Combes S, Postollec G, Cauquil L et al (2009) Influence of cage or pen housing on carcass traits and meat quality of rabbit. Animal 4:295–302CrossRefGoogle Scholar
  23. Cullere M, Dalle Zotte A (2018) Rabbit meat production and consumption: state of knowledge and future perspectives. Meat Sci 143:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cullere M, Hoffman LC, Dalle Zotte A (2013) First evaluation of unfermented and fermented rooibos (Aspalathus linearis) in preventing lipid oxidation in meat products. Meat Sci 95:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cullere M, Tasoniero G, Secci G, et al (2018) Rooibos (Aspalathus linearis) extract as natural antioxidant in rabbit meat patties. LWT-Food Sci Technol under reviewGoogle Scholar
  26. Cunha WF (2014) Caracterização e potencial de comércio da carne de capivara criada em sistema semi-intensivo. Ph.D. Dissertation, Universidade Federal de Goiás, GoiâniaGoogle Scholar
  27. Dal Bosco A, Castellini C, Bernardini M (2001) Nutritional quality of rabbit meat as affected by cooking procedure and dietary vitamin E. J Food Sci 66:1047–1051CrossRefGoogle Scholar
  28. Dalle Zotte A (2000) Main factors influencing the rabbit carcass and meat quality. In: Proceedings of 7th World Rabbit Congress, pp. 4–7Google Scholar
  29. Dalle Zotte A (2002) Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest Prod Sci 75:11–32CrossRefGoogle Scholar
  30. Dalle Zotte A (2014) Rabbit farming for meat purposes. Anim Front 4:62–67CrossRefGoogle Scholar
  31. Dalle Zotte A, Paci G (2014) Rabbit growth performance, carcass traits and hind leg bone characteristic as affected by sire genetic origin, slaughter season, parity order and gender in an organic production system. Anim Sci Pap Rep 32:143–159Google Scholar
  32. Dalle Zotte A, Ouhayoun J (1998) Effect of genetic origin, diet and weaning weight on carcass composition, muscle physicochemical and histochemical traits in the rabbit. Meat Sci 50:471–478PubMedCrossRefGoogle Scholar
  33. Dalle Zotte A, Ragno E (2005) Influence of the paternal genetic origin and season on the live performances and the carcass yield of rabbits reared in the organic production system. Ital J Anim Sci 4:544–546CrossRefGoogle Scholar
  34. Dalle Zotte A, Szendrő Zs (2011) The role of rabbit meat as functional food. Meat Sci 88:319–331PubMedCrossRefGoogle Scholar
  35. Dalle Zotte A, Cullere M, Sartori A et al (2014) Effect of dietary supplementation of Spirulina (Arthrospira platensis) and thyme (Thymus vulgaris) on carcass composition, meat physical traits, and vitamin B12 content on growing rabbits. World Rabbit Sci 22:11–19CrossRefGoogle Scholar
  36. Dalle Zotte A, Parigi Bini R, Xiccato G et al (1997) Effetto della dieta e della durata del post-svezzamento sulla qalità della carcassa e della carne di coniglio. Proceeding of the XII Congresso Nazionale A.S.P.A., Pisa, pp 383–384Google Scholar
  37. Dalle Zotte A, Princz Z, Metzger Sz et al (2009) Response of fattening rabbits reared under different housing conditions. 2. Carcass and meat quality. Livest Sci 122:39–47CrossRefGoogle Scholar
  38. Darre MJ, Sulik SA, Klinsman DM (1991) Physiological averages/ranges. In: Putnam PA (ed) Handbook of animal science. Academic Press Inc., San Diego, CA, pp 183–200CrossRefGoogle Scholar
  39. de Rochambeau H (1997) Genetics of the rabbit for meat production: what’s new since the world rabbit congress held in Budapest in 1988? A review. World Rabbit Sci 5:77–82Google Scholar
  40. de Zaldivar LC (1997) Produccion de cuyes (Cavia porcellus). FAO-Roma. Document technique sur l’élevage N° 138, pp. 1–77Google Scholar
  41. Eid Y, Zeweil H, Ahmed MH et al (2010) Effect of plant source of omega-3 fatty acids and green tea powder on the performance and meat quality of growing rabbits. Egypt J Rabbit Sci 20:115–134Google Scholar
  42. FAOSTAT (2018) The statistics division of the FAO. http://www.fao.org/faostat/en/#data
  43. Felix GA, de Lima Almeida Paz IC, Piovezan U et al (2014) Meat and carcass characteristics of free-living capybaras (Hydrochoerus hydrochaeris). Embrapa Pantanal-Artigo em periódico indexado (ALICE) Nacameh 8:23–38Google Scholar
  44. Food and Agriculture Organization of the United Nations (FAO) (2013) Edible insects – future prospects for food and feed security. FAO Forestry Paper 171:ixGoogle Scholar
  45. Federico P, Canziani GA (2005) Modeling the population dynamics of capybara Hydrochaeris hydrochaerys: a first step towards a management plan. Ecol Model 186:111–121CrossRefGoogle Scholar
  46. Fernandez C, Fraga MJ (1996) The effect of dietary fat inclusion on growth, carcass characteristics and chemical composition of rabbits. J Anim Sci 74:2088–2094PubMedCrossRefGoogle Scholar
  47. Fettinger V, Smulders FJM, Lazar P et al (2010) Lesions in thighs from hunted Brown Hares (Lepus europaeus) and microflora under vacuum-packaging store. Eur J Wildlife Res 56:943–947CrossRefGoogle Scholar
  48. Fiedler LA (1990) Rodents as a food source. In: Proceedings of the Fourteenth Vertebrate Pest Conference 1990, p. 30Google Scholar
  49. Flores-Mancheno CI, Duarte C, Salgado-Tello IP (2017) Caracterización de la carne de cuy (Cavia porcellus) para utilizarla en la elaboración de un embutido fermentado. Rev Cien Agri 1:39–45CrossRefGoogle Scholar
  50. Flores-Mancheno CI, Roca-Argüelles M, Tejedor-Arias R et al (2015) Fatty acid content obtained from the Guinea pig meat. Rev Cien Agri 12:83–90CrossRefGoogle Scholar
  51. Fu Z, Sinclair AJ (2000) Increased α-linolenic acid intake increases tissue α-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids 35:395–400PubMedCrossRefGoogle Scholar
  52. Gerencsér Zs, Szendrő Zs, Matics Zs et al (2014) Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on apparent digestibility and productive performance of growing rabbits. World Rabbit Sci 22:1–9CrossRefGoogle Scholar
  53. Girardi F, Cardozo RM, de Souza VLF et al (2005) Proximate composition and fatty acid profile of semi confined young capybara (Hydrochoerus hydrochaeris hydrochaeris L. 1766) meat. J Food Compos Anal 18:647–654CrossRefGoogle Scholar
  54. Gondret F, Combes S, Larzul C, de Rochambeau H (2002) Effects of divergent selection for body weight at a fixed age on histological, chemical and rheological characteristics of rabbit muscles. Livest Prod Sci 76:81–89CrossRefGoogle Scholar
  55. González-Jiménez E (1995) El capybara (Hydrochoerus hydrochaeris) — Estado actual de su produccion. Roma: Estudio Fao Producion y Sanidad Animal 122:110Google Scholar
  56. Guevara J, Rojas S, Carcelen F et al (2016) Enriquecimiento de la carne de cuy (Cavia porcellus) con ácidos grasos Omega-3 Mediante dietas con aceite de pescado y semillas de Sacha Inchi (Plukenetia volubilis). Rev Inv Vet Perú 27:45–50 10.15381/rivep.v27i1.11450Google Scholar
  57. Hackländer K, Arnold W, Ruf T (2002b) Postnatal development and thermoregulation in the precocial European hare (Lepus europaeus). J Comp Physiol B 1722:183–190Google Scholar
  58. Hackländer K, Tataruch F, Ruf T (2002a) The effect of dietary fat content on lactation energetics in the European hare (Lepus europaeus). Physiol Biochem Zool 751:19–28CrossRefGoogle Scholar
  59. Hermida M, Gonzalez M, Miranda M et al (2006) Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Sci 73:635–639PubMedCrossRefGoogle Scholar
  60. Hernández Maya CF (2015) Efecto del sexo y edad de sacrificio sobre los quintos cuartos y la calidad de la canal de cuy. Faculta de Ingengnería. Riobamba – Ecuador: Universidad Nacional de ChimborazoGoogle Scholar
  61. Hernández P, Cesari V, Blasco A (2008) Effect of genetic rabbit lines on lipid content, lipolytic activities and fatty acid composition of hind leg meat and perirenal fat. Meat Sci 78:485–491PubMedCrossRefGoogle Scholar
  62. Herrera EA (2012) Capybara digestive adaptations. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 97–106Google Scholar
  63. Herrera EA, Barreto GR (2013) Capybaras as a source of protein: utilization and management in Venezuela. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 305–319CrossRefGoogle Scholar
  64. Higaonna OR, Muscari GJ, Chauca F et al (2008) Composición química de la carne de cuy (Cavia porcellus). INIA. Investigaciones en cuyes, Trabajos presentados a la Asociación Peruana de Producción Animal. Lima, Peru: INIA – CE La Molina, Universidad Agraria La Molina, Universidad Peruana Cayetano, Hereida, Aprodes. APPAGoogle Scholar
  65. Hirsch E (1973) Some determinants of intake and patterns of feeding in the guinea pig. Physiol Behav 11:687–704PubMedCrossRefGoogle Scholar
  66. Hoffman LC, Cawthorn DM (2012) What is the role and contribution of meat from wildlife in providing high quality protein for consumption? Anim Front 2:40–53CrossRefGoogle Scholar
  67. Hulot F, Ouhayoun J (2010) Muscular pH and related traits in rabbits: a review. World Rabbit Sci 7:15–36CrossRefGoogle Scholar
  68. Indecopi (2006) NTP 201.058. Carne y productos cárnicos. Definiciones, clasificación y requisitos de las carcasas y carne de cuy (Cavia porcellus) [Meat and meat products. Definition, classification and requirements for guinea pig carcass and meat]. Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual, Lima, PerúGoogle Scholar
  69. Jardim NS, Bressan MC, Lemos AL et al (2003) Teor lipídico e perfil de ácidos graxos da carne de capivara (Hydrochaeris hydrochaeris). Ciênc Agrotec 27:651–657CrossRefGoogle Scholar
  70. Jurado-Gámez H, Cabrera-Lara EJ, Salazar JA (2016) Comparación de dos tipos de sacrificio y diferentes tiempos de maduración sobre variables físico-químicas y microbiológicas de la carne de Cuy (Cavia porcellus). Rev Med Vet Zoot 63:201–217Google Scholar
  71. Kouba M, Benatmane F, Blochet JE et al (2008) Effect of a linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Sci 80:829–834PubMedCrossRefGoogle Scholar
  72. Kouakou NDV, Grongnet NE, Assidjo E et al (2013) Effect of a supplementation of Euphorbia heterophylla on nutritional on nutritional meat quality of Guinea pig (Cavia porcellus L.). Meat Sci 93:21–826CrossRefGoogle Scholar
  73. Lavorenti A (1989) Domestication and potential for genetic improvement of capybara. Rev Bras Genet 12:137–144Google Scholar
  74. Lebas F, Coudert P, Rouvier R et al (1997) The rabbit: husbandry, health, and production. Food and Agriculture organization of the United Nations, RomeGoogle Scholar
  75. Lammers PJ, Carlson AL, Zdorkowski GA et al (2009) Rducing the food insecurity in developing countries through meat production: the potential of the guinea pig (Cavia porcellus). Renew Agr Food Syst 24:155–162CrossRefGoogle Scholar
  76. Lozada PP, Jiménez RA, San Martín FH et al (2013) Effect of the inclusion of barley grain and sunflower seed in a forage diet on the optimum culling age of Guinea pigs. Rev Inv Vet Perú 24:25–31Google Scholar
  77. Lucas JR, Balcazar-Nakamatsu S, Tirado O et al (2017) El pH de la carne de cobayo (Cavia porcellus) procedente del manejo deficiente del bienestar animal durante el sacrificio en la sierra central del Perú. FAVE Cs Veterinarias 16:70–73CrossRefGoogle Scholar
  78. Luna Chura J (2014) Parámetros productivos y económico de cuyes G y nativos criados en diferentes sistemas de producción en la Asociación de Criaderos de Cuyes del Centro-Acricucen-Huancayo. Universidad Nacional Agraria de la Selva, Facultad de Zootecnia, Master thesisGoogle Scholar
  79. Maertens L, Van Herck A (2000) Performance of weaned rabbits raised in pens or in classical cages: first results. World Rabbit Sci 8:435–440Google Scholar
  80. Maldonado-Chaparro A, Blumstein DT (2008) Management implications of capybara (Hydrochoerus hydrochaeris) social behaviour. Biol Conserv 141:1945–1952CrossRefGoogle Scholar
  81. Mancini S, Secci G, Preziuso G et al (2018) Ginger (Zingiber officinale Roscoe) powder as dietary supplementation in rabbit: life performances, carcas characteristics and meat quality. Ital J Anim Sci:1–6.  https://doi.org/10.1080/1828051X.2018.1427007CrossRefGoogle Scholar
  82. Martínez-Álvaro M, Blasco A, Hernández P (2017) Effect of selection for intramuscular fat on the fatty acid composition of rabbit meat. Animal 12:2002–2008.  https://doi.org/10.1017/S1751731117003494CrossRefPubMedPubMedCentralGoogle Scholar
  83. Martínez M, Motta W, Cervera C et al (2005) Feeding mulberry leaves to fattening rabbits: effects on growth, carcass characteristics and meat quality. Anim Sci 80:275–281CrossRefGoogle Scholar
  84. Masoero G, Riccioni L, Bergoglio G, et al (1992) Implications of fasting and on transportation for a high quality rabbit meat product. In: Proceedings of 5th World Rabbit Congress, Corvallis, Oregon, Vol. B:841–847Google Scholar
  85. Matics Zs, Cullere M, Szín M et al (2017) Effect of a dietary supplementation with linseed oil and selenium to growing rabbits on their productive performance, carcass traits and fresh and cooked meat quality. J Anim Physiol An N 101:685–693CrossRefGoogle Scholar
  86. Mattos JC, Chauca LF, San Martín FH et al (2003) Uso del ensilado biológico de pescado en la alimentación de cuyes mejorados. Rev Inv Vet Perú 14:89–96Google Scholar
  87. Mertin D, Slamečka J, Ondruška L et al (2012) Comparison of meat quality between European brown hare and domestic rabbit. Slovak J Anim Sci 45:89–95Google Scholar
  88. Morales E (1994) The guine pig in the Andean economy: from household animal to market commodity. Lat Am Res Rev 29:129–142Google Scholar
  89. Morales AM, Carcelén FC, Ara MG et al (2011) Effect of two energy levels on the productive performance of guinea pigs (Cavia porcellus) of the Peru breed. Rev Inv Vet Perú 22:177–182Google Scholar
  90. Moreira JR, Alvarez MR, Tarifa T et al (2013) Taxonomy, natural history and distribution of the capybara. J.R. Moreira et al. (eds.), Capybara: biology, use and conservation of an exceptional Neotropical species, DOI  https://doi.org/10.1007/978-1-4614-4000-0_1, © Springer Science+Business Media, New York, 2013Google Scholar
  91. Nakyinsige K, Sazili AQ, Zulkifli I et al (2014) Influence of gas stunning and halal slaughter (no stunning) on rabbits welfare indicators and meat quality. Meat Sci 75:290–298Google Scholar
  92. Nogueira SSC (1997) Manejo reprodutivo da capivara (Hydrochoerus hydrochaeris hydrochaeris) em sistema intensivo de criação. Ph.D. dissertation Universidade de São Paulo, São PauloGoogle Scholar
  93. Nogueira-Filho SLG (1996) Criação de capivaras. Centro de Produções Técnicas, ViçosaGoogle Scholar
  94. Nogueira SSC, Nogueira-Filho SLG, Otta E, Dias CTS, Carvalho A (1999) Determination of the causes of infanticide in capybara (Hydrochaeris hydrochaeris) groups in captivity. Applied Animal Behaviour Science 62 (4):351–357CrossRefGoogle Scholar
  95. Nogueira-Filho SLG, Nogueira SSC (2018) Capybara meat: An extraordinary resource for food security in South America. Meat Sci 145:329–333PubMedCrossRefGoogle Scholar
  96. Nogueira-Filho SLG, Nogueira SSC (2004) Captive breeding program as an alternative for wildlife conservation in Brazil. In: Silvius KM, Bodmer RE, Fragoso JMV (eds) People in nature: wildlife conservation in South and Central America. Columbia University Press, New York, pp 171–190Google Scholar
  97. Núñez-Valle D, Cevallos-Velastegui LP, Morales-delaNuez A et al (2014) Postmortem pH evolution in four muscles and onset, state and resolution of rigor mortis of guinea pigs (Cavia porcellus) carcass. J Anim Sci 92:2Google Scholar
  98. Oda SAI, Bressan MC, Cardoso MG et al (2004a) Composição centesimal e teor de colesterol dos cortes comerciais de capivara (Hydrochaeris hydrochaeris L. 1766). Ciênc Agrotec 28:1344–1351CrossRefGoogle Scholar
  99. Oda SAI, Bressan MC, Cardoso MG et al (2004b) Efeito do método de abate e do sexo na composição centesimal, perfil de ácidos graxos e colesterol da carne de capivara. Ciênc Tecnol Aliment 24:236–242CrossRefGoogle Scholar
  100. Ojasti J (1996) Wildlife utilization in Latin America: current situation and prospects for sustainable management (No. 25) Food & Agriculture OrgGoogle Scholar
  101. Ortiz Hernández JA, Rubio Lozano MS (2001) Effect of breed and sex on rabbit carcass yield and meat quality. World Rabbit Sci 9:51–56Google Scholar
  102. Palacios D (2017) Efecto del sexo y edad de sacrificio sobre la composición regional y composición tisular de la canal de cuy. Faculdad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba – EcuadorGoogle Scholar
  103. Papadomichelakis G, Zoidis E, Pappas A.C. et al (2017) Effects of increasing dietary organic selenium levels on meat fatty acid composition and oxidative stability in growing rabbits. Meat Sci 131:132–138PubMedCrossRefGoogle Scholar
  104. Pascual M, Cruz DJ, Blasco A (2017) Modeling production functions and economic weights in intensive meat production of guinea pigs. Trop Anim Health Prod 49:1361–1367PubMedCrossRefPubMedCentralGoogle Scholar
  105. Peiretti PG, Meineri G (2008a) Effects on growth performance, carcass characteristics, and the fat and meat fatty acid profile of rabbits fed diets with chia (Salvia hispanica L.) seed supplements. Meat Sci 80:1116–1121PubMedCrossRefPubMedCentralGoogle Scholar
  106. Peiretti PG, Meineri G (2008b) Effects of diets with incresing levels of Spirulina platensis on the performance and apparent digestibility in growing rabbits. Livest Sci 118:173–177CrossRefGoogle Scholar
  107. Peiretti PG, Meineri G (2011) Effects of diets with incresing levels of Spirulina platensis on the carcass characteristics, meat quality and fatty acid composition of growing rabbits. Livest Sci 140:218–224CrossRefGoogle Scholar
  108. Peiretti PG, Mussa PP, Prola L et al (2007) Use of different levels of false flax (Camelina sativa L.) seed in diets for fattening rabbits. Livest Sci 107:192–198CrossRefGoogle Scholar
  109. Piles M, Blasco A, Pla M (2000) The effect of selection for growth rate on carcass composition and meat characteristics of rabbits. Meat Sci 54:347–355PubMedCrossRefPubMedCentralGoogle Scholar
  110. Pinheiro MS (2008) A criação semi-intensiva e o manejo sustentável de capivaras na natureza. Documentos 232. Embrapa Clima Temperado, PelotasGoogle Scholar
  111. Pinheiro MS, Pouey JLOF, Dewantier LR et al (2007) Avaliação de Carcaça de Fêmeas e Machos Inteiros de Capivara (Hydrochaeris hydrochaeris) Criados em Sistema Semi-intensivo. ALPA 15:52–57Google Scholar
  112. Pinto MF, Ponsano EHG, Almeida APS et al (2007) Characteristics and technological potential of the capybara meat. Ciênc Rural 37:868–873CrossRefGoogle Scholar
  113. Pla M, Guerrero L, Guardia D et al (1998) Carcass characteristics and meat quality of rabbit lines selected for different objectives: I. Between lines comparison. Livest Prod Sci 54:115–123CrossRefGoogle Scholar
  114. Pla M, Hernández P, Blasco A (1996) Carcass composition and meat characteristics of two rabbit breeds of different degrees of maturity. Meat Sci 44:85–92PubMedCrossRefPubMedCentralGoogle Scholar
  115. Quintana EM, Jiménez RA, Carcelén FC et al (2013) Effect of diets based on alfalfa, barley meal and mineral block on the productive performance of guinea pigs. Rev Inv Vet Perú 24:452–432Google Scholar
  116. Rigo N, Trocino A, Poppi L et al (2015) Performance and mortality of farmed hares. Animal 9:1025–1031PubMedCrossRefPubMedCentralGoogle Scholar
  117. Rødbotten M, Kubberød E, Lea P et al (2004) A sensory map of the meat universe. Sensory profile of meat from 15 species. Meat Sci 68:137–144PubMedCrossRefPubMedCentralGoogle Scholar
  118. Saadoun A, Cabrera MC (2008) A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Sci 80:570–581CrossRefGoogle Scholar
  119. Saadoun A, Cabrera MC, Terevinto A et al (2014) Why not a piece of meat of rhea, nutria, yacare, or vicugna for dinner? Anim Front 4:25–32CrossRefGoogle Scholar
  120. Sánchez-Macías D, Barba-Maggi L, Barba-Cuji I et al (2016a) Prediction of the carcass tissue composition of Guinea pigs form pieces of low commercial value. IV Workshop de Ciencia Innovación, Tecnología y Saberes, 2016 (ISBN 978-9942-935-27-4)Google Scholar
  121. Sánchez-Macías D, Castro N, Rivero MA et al (2016b) Proposal for standard methods and procedure for Guinea pig carcass evaluation, jointing and tissue separation. J Anim Appl Res 44:65–70CrossRefGoogle Scholar
  122. Sánchez-Macías D, Barba-Maggi L, Morales-Delanuez A et al (2018) Guinea pig for meat prodction: a systematic review of factors affecting the production, carcass and meat quality. Meat Sci 143:165–176PubMedCrossRefGoogle Scholar
  123. Santos CLD, Pérez JRO, Siqueira ERD et al (2001) Crescimento alométrico dos tecidos ósseo, muscular e adiposo na carcaça de cordeiros Santa Inês e Bergamácia. Rev Bras Zootec 30:493–498CrossRefGoogle Scholar
  124. Schai-Braun S, Reichlin TS, Ruf T et al (2015) The European hare (Lepus europaeus): a picky herbivore searching for plants parts rich in fat. PLoS One 10:e0134278PubMedPubMedCentralCrossRefGoogle Scholar
  125. Škrivanko M, Hadžiosmanović M, Cvrtila Ž et al (2008) The hygiene and quality of hare meat (Lepus europaeus Pallas) from Eastern Croatia. Arch Leb 59:180–184Google Scholar
  126. Szendrő Zs, Dalle Zotte A (2011) Effect of housing conditions on production and behaviour of growing meat rabbits: a review. Livest Sci 137:296–303CrossRefGoogle Scholar
  127. Szendrő Zs, Kasza R, Matics Zs et al (2016) Divergent selection for total body fat content of growing rabbits. 3. Effect on carcass traits and fat content of meat. In: 11th World Rabbit Congress, Quingdao, China, 791–794Google Scholar
  128. Szendrő Zs, Matics Zs, Gerencsér Zs et al (2010) Effect of dam and sire genotypes on productive and carcass traits of rabbits. J Anim Sci 88:533–543PubMedCrossRefPubMedCentralGoogle Scholar
  129. Szendrő Zs, Radnai I, Biró-Németh E et al (1996) The effect of live weight on the carcass traits of rabbits between 2.2–3.5 kg. In: Proceeding of the 6th World Rabbit Congress, Toulouse, France, 3, pp. 263–267Google Scholar
  130. Szendrő Zs, Szendrő K, Dalle Zotte A (2012) Management of reproduction on small, medium and large rabbit farms: a review. Asian-australas J Anim Sci 25:738–748PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tandzong CLM, Mbougueng PD, Womeni HM et al (2015) Effect of cassava leaf (Manihot esculenta) level in guinea-pigs (Cavia porcellus) meal on the physico-chemical and technologycal properties of its meat. Food Nutr Sci 6:1408–1421Google Scholar
  132. Tărnăuceanu G, Pop C, Boişteanu PC (2015) Technological quality of rabbit meat (Belgian Giant breed) and hare meat (Lepus europaeus Pallas). Lucrări Științifice-Universitatea de Științe Agricole și Medicină Veterinară, Seria Zootehnie 63:52–56Google Scholar
  133. Trocino A, Xiccato G, Queaque PI et al (2003) Effect of transport duration and gender on rabbit carcass and meat quality. World Rabbit Sci 11:23–32Google Scholar
  134. Trocino A, Birolo M, Dabbou S et al (2018) Effect of age and gender on carcass traits and meat quality of farmed brown hares. Animal 12:864–871PubMedCrossRefPubMedCentralGoogle Scholar
  135. Tůmová E, Bízková Z, Skřivanová V et al (2014) Comparisons of carcass and meat quality among rabbit breeds of different sizes, and hybrid rabbits. Livest Sci 165:8–14CrossRefGoogle Scholar
  136. Valencak T, Tataruch F, Ruf F (2009) Peak energy turnover in lactating European hares: the role of fat reserves. J Exp Biol 212:231–237PubMedPubMedCentralCrossRefGoogle Scholar
  137. Valencak T, Arnold W, Tataruch F et al (2003) High content of polyunsaturated fatty acids in muscle phospholipids of a fast runner, the European brown hare (Lepus europaeus). J Comp Physiol B 173:695–702PubMedCrossRefGoogle Scholar
  138. Valencak T, Gamsajäger L, Ohrnberger S et al (2015) Healthy n-6/n-3 fatty acid composition from five European game species remains after cooking. BMC Res Notes 8:273PubMedPubMedCentralCrossRefGoogle Scholar
  139. Van Vliet N, Cornelis D, Beck H et al (2016) Meat from the wild: extractive uses of wildlife and alternatives for sustainability. In: Mateo R, Arroyo B, García JT (eds) Current trends in wildlife research. Springer, Cham, pp 225–265CrossRefGoogle Scholar
  140. Vicenti A, Ragni M, di Summa A et al (2003) Influence of feeds and rearing system on the productive performances and the chemical and fatty acid composition of hare meat. Food Sci Technol Int 9:279–284CrossRefGoogle Scholar
  141. Vivas Tórrez JA (2013) Especies alternativas: manual de crianza de cobayos (Cavia porcellus). Nicaragua: Universidad Nacional Agraria. 47 p. Available at: http://repositorio.una.edu.ni/2472/1/RENL01V856.pdf
  142. Vizzarri F, Nardoia M, Palazzo M (2014) Effect of Lippia citriodora extract on productive performance and meat quality parameters in hares (Lepus europaeus pall.). Archiv Tierzucht 57:1–7Google Scholar
  143. Xiccato G, Parigi-Bini R, Dalle Zotte A et al (1994) Effect of age, sex and transportation on composition and sensorial properties of rabbit meat. 40th International Congress Meat Science and Technology (ICoMST). The Hague, 28/08-2/09, W-2.02. http://icomst-proceedings.helsinki.fi/index.php?year=1994
  144. Xiccato G, Trocino A, Filiou E et al (2013) Bicellular cage vs. collective pen housing for rabbits: growth performance, carcass and meat quality. Livest Sci 155:407–414CrossRefGoogle Scholar
  145. Yoplac I, Yalta J, Vásquez HV et al (2017) Effect of coffee (Coffea arabica) pulp meal as feed on productive parameters of guinea pigs (Cavia porcellus L) – Peru breed. Rev Inv Vet Perú 28:549–561Google Scholar
  146. Zomeño C, Blasco A, Hernández P (2013) Divergent selection for intramuscular fat content in rabbits. II Correlated responses on carcass and meat quality traits J Anim Sci 91:532–4539Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Animal Medicine, Production and Health – MAPSUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations