Horsemeat: Increasing Quality and Nutritional Value

  • José Manuel LorenzoEmail author
  • Aristide Maggiolino
  • María Victoria Sarriés
  • Paolo Polidori
  • Daniel Franco
  • Massimiliano Lanza
  • Pasquale De Palo


Equine meat, including horse and donkey species, is considered an alternative option for red meats’ consumers due to wholesomeness especially in terms of nutritional value. The present chapter shows the nutritional composition of this type of meat, is characterized by low levels of fat and cholesterol, relatively high concentrations of n-3 fatty acids and heme iron indicating that their consumption may be beneficial for human health. Foal is the most important equine slaughter category which guarantees high standard quality compared to adults. These foals come from crossbreeding of native breeds with horses for meat production and are slaughtered between 15 and 24-months-old. Foal carcass is dark with a covered degree of fatness giving a favourable organoleptic profile property on the meat. Livestock production system plays the most important factor affecting horsemeat quality as concerns nutritional value. Extensive feeding systems improve horsemeat fatty acid profile by increasing polyunsaturated fatty acids compared to intensive feeding systems.


Horsemeat Carcass quality Chemical composition Nutritional value 



Jose M. Lorenzo is member of the MARCARNE network, funded by CYTED (ref. 116RT0503). The present chapter has been edited during the visiting period of prof. José M. Lorenzo to the Department of Veterinary Medicine of Bari, granted by the University A. Moro of Bari (DR 3681 del 22/11/2017).


  1. Aganga AA, Aganga AO, Thema T, Obocheleng KO (2003) Carcass analysis and meat composition of the donkey. Pak J Nutr 2(3):138–147CrossRefGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (2004) Agency for Toxic Substances and Disease Registry. Division of Toxicology, Atlanta Available from Scholar
  3. Alonso V, del Mar Campo M, Español S, Roncalés P, Beltrán JA (2009) Effect of crossbreeding and gender on meat quality and fatty acid composition in pork. Meat Sci 81(1):209–217PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aranceta J, Pérez-Rodrigo C (2012) Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: a systematic review. Br J Nutr 107(S2):S8–S22PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Asp Med 26(4–5):353–362CrossRefGoogle Scholar
  6. Badiani A, Manfredini M, Nanni N (1993) Qualità della carcassa e della carne di puledri lattoni. Zootecnica e Nutrizione Animale 19(1):23–31Google Scholar
  7. Badiani A, Nanni N, Gatta PP, Tolomelli B, Manfredini M (1997) Nutrient Profile of Horsemeat1. J Food Compos Anal 10(3):254–269CrossRefGoogle Scholar
  8. Badiani A, Nanni N, Gatta PP, Bitossi F, Tolomelli B, Manfredini M (1998) Nutrient content and retention in selected roasted cuts from 3-month-old ram lambs. Food Chem 61(1–2):89–100CrossRefGoogle Scholar
  9. Bauman DE, Baumgard LH, Corl BA, Griinari DJ (2000) Biosynthesis of conjugated linoleic acid in ruminants. J Anim Sci 77(E-Suppl):1–15CrossRefGoogle Scholar
  10. Belaunzaran X, Bessa RJ, Lavín P, Mantecón AR, Kramer JK, Aldai N (2015) Horse-meat for human consumption-Current research and future opportunities. Meat Sci 108:74–81PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bò CD, Simonetti P, Gardana C, Riso P, Lucchini G, Ciappellano S (2013) Horse meat consumption affects iron status, lipid profile and fatty acid composition of red blood cells in healthy volunteers. Int J Food Sci Nutr 64(2):147–154PubMedCrossRefPubMedCentralGoogle Scholar
  12. British Department of Health (1994) Nutritional aspects of cardiovascular diseases. Report on health and social subjects n°46. H.M. Stationery Office, LondonGoogle Scholar
  13. Campodoni G, Preziuso G, Gatta D, Colombani B, Orlandi M (1994) Rilievi in vita e al macello e qualità della carne in puledri derivati Franches Montagnes. Zootecnica e Nutrizione Animale 20(1):35–44Google Scholar
  14. Cantoni C, Radaelli A, Soncini G (1979) Potere tampone del muscolo di cavallo. Arch Vet Int 30:44–47Google Scholar
  15. Catalano AL, Quarantelli A (1979) Caratteristiche di carcassa e composizione chimico-bromatologica delle carni di puledri da latte. Clin Vet 102:498–506Google Scholar
  16. Catalano AL, Miraglia N, De Stefano C, Martuzzi F (1986) Produzione di carne da cavalli di diverse categorie. Obiettivi e Documenti Veterinari 7(12):69–73Google Scholar
  17. Clarke C, Wallin D, Kidd J (1991) The international warmblood horse: a worldwide guide to breeding and bloodlines. Kenilworth Press, UKGoogle Scholar
  18. Commission Regulation (EC) (2008) No 1249/2008 of 10 December 2008 laying down detailed rules on the implementation of the Community scales for the classification of beef, pig and sheep carcases and the reporting of prices thereof. Official Journal of the European Union L 337/3Google Scholar
  19. Courtot D (1984) Classification des Equidés en vif et en carcasse. In: Le cheval. INRA, Paris, pp 611–614Google Scholar
  20. Davies Z (2009) Introduction to horse nutrition. John Wiley & Sons, UKGoogle Scholar
  21. De Boer HDBL, Dumont BL, Pomeroy RW, Weniger JH (1974) Manual on EAAP reference methods for the assessment of carcass characteristics in cattle. Livest Sci 2:151–164CrossRefGoogle Scholar
  22. De Palo P, Maggiolino A, Centoducati P, Tateo A (2012) Colour changes in meat of foals as affected by slaughtering age and post-thawing time. Asian Australas J Anim Sci 25(12):1775PubMedPubMedCentralCrossRefGoogle Scholar
  23. De Palo P, Tateo A, Maggiolino A, Centoducati P (2014) Effect of nutritive level on carcass traits and meat quality of IHDH foals. Anim Sci J 85(7):780–786PubMedPubMedCentralCrossRefGoogle Scholar
  24. De Palo P, Maggiolino A, Centoducati P, Milella P, Calzaretti G, Tateo A (2016a) Is meat quality from Longissimus lumborum samples correlated with other cuts in horse meat. Anim Sci J 87(3):428–438PubMedCrossRefPubMedCentralGoogle Scholar
  25. De Palo P, Maggiolino A, Milella P, Centoducati N, Papaleo A, Tateo A (2016b) Artificial suckling in Martina Franca donkey foals: effect on in vivo performances and carcass composition. Trop Anim Health Prod 48(1):167–173PubMedCrossRefPubMedCentralGoogle Scholar
  26. De Palo P, Maggiolino A, Centoducati P, Calzaretti G, Milella P, Tateo A (2017a) Equid milk production: evaluation of Martina Franca jennies and IHDH mares by Wood’s model application. Anim Prod Sci 57(10):2110–2116CrossRefGoogle Scholar
  27. De Palo P, Tateo A, Maggiolino A, Marino R, Ceci E, Nisi A, Lorenzo JM (2017b) Martina Franca donkey meat quality: Influence of slaughter age and suckling technique. Meat Sci 134:128–134PubMedCrossRefPubMedCentralGoogle Scholar
  28. De Palo P, Maggiolino A, Albenzio M, Caroprese M, Centoducati P, Tateo A (2018) Evaluation of different habituation protocols for training dairy jennies to the milking parlor: Effect on milk yield, behavior, heart rate and salivary cortisol. Appl Anim Behav Sci 204:72–80CrossRefGoogle Scholar
  29. Debrot S (1984) Importance et exigences requises du marchè de la viande de cheval en Suisse. Congrès de l’Association Suisse de Zootechnie, LausanneGoogle Scholar
  30. Díaz MT, Alvarez I, De la Fuente J, Sañudo C, Campo MM, Oliver MA, Caneque V (2005) Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci 71(2):256–263PubMedCrossRefPubMedCentralGoogle Scholar
  31. Domínguez R, Crecente S, Borrajo P, Agregán R, Lorenzo JM (2015) Effect of slaughter age on foal carcass traits and meat quality. Animal 9(10):1713–1720PubMedCrossRefPubMedCentralGoogle Scholar
  32. Domínguez R, Pateiro M, Crecente S, Ruiz M, Sarriés MV, Lorenzo JM (2018) Effect of linseed supplementation and slaughter age on meat quality of grazing crossbred Galician x Burguete foals. J Sci Food Agric 98:266–273PubMedCrossRefGoogle Scholar
  33. Elgasim EA, Alkanhal MA (1992) Proximate composition, amino acids and inorganic mineral content of Arabian Camel meat: comparative study. Food Chem 45(1):1–4CrossRefGoogle Scholar
  34. Fairweather-Tait SJ, Richard FH (1996) Iron–zinc and calcium–Fe interactions in relation to Zn and Fe absorption. Proc Nutr Soc 54(2):465–473CrossRefGoogle Scholar
  35. FAO/WHO (2002) Human vitamin and mineral requirements. FAO/WHO, RomeGoogle Scholar
  36. FAOSTAT (2018) (Consulted on 26 of June 2018)
  37. Franco D, Lorenzo JM (2014) Effect of muscle and intensity of finishing diet on meat quality of foals slaughtered at 15 months. Meat Sci 96(1):327–334PubMedCrossRefPubMedCentralGoogle Scholar
  38. Franco D, Fernández M, Temperán S, Garcia L, Lorenzo JM (2011a) Carcass quality of Galician mountain foals. Archivos de Zootecnia 60(231):385–388CrossRefGoogle Scholar
  39. Franco D, Rodríguez E, Purriños L, Crecente S, Bermúdez R, Lorenzo JM (2011b) Meat quality of “Galician Mountain” foals breed. Effect of sex, slaughter age and livestock production system. Meat Sci 88(2):292–298PubMedCrossRefPubMedCentralGoogle Scholar
  40. Franco D, Crecente S, Vázquez JA, Gómez M, Lorenzo JM (2013) Effect of cross breeding and amount of finishing diet on growth parameters, carcass and meat composition of foals slaughtered at 15 months of age. Meat Sci 93(3):547–556PubMedCrossRefPubMedCentralGoogle Scholar
  41. French P, Stanton C, Lawless F, O'Riordan EG, Monahan FJ, Caffrey PJ, Moloney AP (2000) Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage, or concentrate-based diets. J Anim Sci 78(11):2849–2855PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gade DW (1976) Horsemeat as human food in France. Ecol Food Nutr 5(1):1–11CrossRefGoogle Scholar
  43. Gaull GE (1989) Taurine in pediatric nutrition: review and update. Pediatrics 83(3):433–442PubMedPubMedCentralGoogle Scholar
  44. Goldberg I (2012) Functional foods: designer foods, pharmafoods, nutraceuticals. Springer Science & Business Media, UKGoogle Scholar
  45. Gómez M, Lorenzo JM (2012) Effect of packaging conditions on shelf-life of fresh foal meat. Meat Sci 91(4):513–520PubMedCrossRefPubMedCentralGoogle Scholar
  46. Honikel KO (1987) Water-holding capacity of meat. In: Te Pas MF, Everts ME, Haagsman HP (eds) Muscle development of livestock animals: physiology, genetics and meat quality. CABI Publishing, Cambridge, MA, pp 389–400Google Scholar
  47. Institute of Medicine (2003) The National Academies Press, Washington, DC, p. 248Google Scholar
  48. Johnston DJ, Reverter A, Robinson DL, Ferguson DM (2001) Sources of variation in mechanical shear force measures of tenderness in beef from tropically adapted genotypes, effects of data editing and their implications for genetic parameter estimation. Aust J Exp Agric 41(7):991–996CrossRefGoogle Scholar
  49. Juárez M, Polvillo O, Gómez MD, Alcalde MJ, Romero F, Valera M (2009) Breed effect on carcass and meat quality of foals slaughtered at 24 months of age. Meat Sci 83(2):224–228PubMedCrossRefPubMedCentralGoogle Scholar
  50. Keane MG, Allen P (1998) Effects of production system intensity on performance, carcass composition and meat quality of beef cattle. Livest Sci 56(3):203–214CrossRefGoogle Scholar
  51. Kokoszyński D, Bernacki Z, Duszyński Ł (2012) Body conformation, carcass composition and physicochemical and sensory properties of meat from pheasants of different origin. Cz J Anim Sci 57(3):115–124CrossRefGoogle Scholar
  52. Lacheretz A, Ravaille C, Darre R, Barraud JY (1990) Lê laiton et l ‘avenir dês chevaux de trait–Etude pondérale, économique et de promotion. J Med Vet 141(10):749–757Google Scholar
  53. Lanza M, Landi C, Scerra M, Galofaro V, Pennisi P (2009) Meat quality and intramuscular fatty acid composition of Sanfratellano and Haflinger foals. Meat Sci 81(1):142–147PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lanza M, Fabro C, Scerra M, Bella M, Pagano R, Brogna DMR, Pennisi P (2011) Lamb meat quality and intramuscular fatty acid composition as affected by concentrates including different legume seeds. Ital J Anim Sci 10(2):87–90CrossRefGoogle Scholar
  55. Lawrie RA (1953) The relation of energy-rich phosphate in muscle to myoglobin and to cytochrome-oxidase activity. Biochem J 55(2):305–308PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lawrie RA (1985) Meat science, 5th edn. Pergamon Press, OxfordGoogle Scholar
  57. Litwińczuk A, Florek M, Skałecki P, Litwińczuk Z (2008) Chemical composition and physicochemical properties of horse meat from the longissimus lumborum and semitendinosus muscle. J Mus Fodds 19(3):223–236CrossRefGoogle Scholar
  58. Lombardi-Boccia G, Martinez-Dominguez B, Aguzzi A (2002) Total heme and non heme iron in raw and cooked meats. J Food Sci 67(5):1738–1741CrossRefGoogle Scholar
  59. Lorenzo JM (2014) Changes on physico-chemical, textural, lipolysis and volatile compounds during the manufacture of dry-cured foal “cecina”. Meat Sci 96(1):256–263PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lorenzo JM, Carballo J (2015) Changes in physico-chemical properties and volatile compounds throughout the manufacturing process of dry-cured foal loin. Meat Sci 99:44–51PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lorenzo JM, Carballo J (2016) Influence of anatomical retail cut on physicochemical and sensory characteristics of foal “cecina”. Int J Food Prop 19(4):802–813CrossRefGoogle Scholar
  62. Lorenzo JM, Franco D (2012) Fat effect on physico-chemical, microbial and textural changes through the manufactured of dry-cured foal sausage lipolysis, proteolysis and sensory properties. Meat Sci 92(4):704–714PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lorenzo JM, Gómez M (2012) Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Sci 92(4):610–618PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lorenzo JM, Fuciños C, Purriños L, Franco D (2010) Intramuscular fatty acid composition of “Galician Mountain” foals breed: effect of sex, slaughtered age and livestock production system. Meat Sci 86(3):825–831PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lorenzo JM, Pateiro M (2013) Influence of type of muscles on nutritional value of foal meat. Meat Sci 93(3): 630–638PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lorenzo JM, Sarriés MV, Franco D (2013a) Sex effect on meat quality and carcass traits of foals slaughtered at 15 months of age. Animal 7(7):1199–1207PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lorenzo JM, Pateiro M, Franco D (2013b) Influence of muscle type on physicochemical and sensory properties of foal meat. Meat Sci 94(1):77–83PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lorenzo JM, Crecente S, Franco D, Sarriés MV, Gómez M (2014a) The effect of livestock production system and concentrate level on carcass traits and meat quality of foals slaughtered at 18 months of age. Animal 8(3):494–503PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lorenzo JM, Sarriés MV, Tateo A, Polidori P, Franco D, Lanza M (2014b) Carcass characteristics, meat quality and nutritional value of horsemeat: a review. Meat Sci 96(4):1478–1488PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lorenzo JM, Fonseca S, Gómez M, Domínguez R (2015) Influence of the salting time on physico-chemical parameters, lipolysis and proteolysis of dry-cured foal “cecina”. LWT- Food Sci Technol 60(1):332–338CrossRefGoogle Scholar
  71. Lorenzo JM, Gómez M, Purriños L, Fonseca S (2016) Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry-cured foal sausage. J Sci Food Agric 96(4):1194–1201PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lorenzo JM, Munekata PE, Campagnol PCB, Zhu Z, Alpas H, Barba FJ, Tomasevic I (2017) Technological aspects of horse meat products–A review. Food Res Int 102:176–183PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lorenzo JM, Guedes CM, Agregán R, Sarriés MV, Franco D, Silva SR (2018) Prediction of foal carcass composition and wholesale cut yields by using video image analysis. Animal 12(1):174–182PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mach N, Devant M, Díaz I, Font-Furnols M, Oliver MA, García JA, Bach A (2006) Increasing the amount of n-3 fatty acid in meat from young Holstein bulls through nutrition. J Anim Sci 84(11):3039–3048PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mainsant P, de Fontguyon G, Capelle P (1986) Consumption and distribution of horsemeat in France. In Journee de la Recherche Chevaline. Quoi de neuf en matiere d'etudes et de recherche chevaline. Paris (France)Google Scholar
  76. Manfredini M, Badiani A, Nanni N (1992) Rese di macellazione, sviluppo dei componenti del quinto quarto e caratteristiche quanti-qualitative delle carcasse di puledro e cavallo. Agricoltora Ricerca 14(131):23–40Google Scholar
  77. Martin-Rosset W, Boccard R, Jussiaux M, Robelin J, Trillaud C (1980) Rendement et composition des carcasses du poulain de boucherie. Bulletin Technique Centre de Recherches Zootechniques 41:57–64Google Scholar
  78. Monsen ER (1988) Iron nutrition and absorption: dietary factors which impact iron bioavailability. J Am Diet Assoc 88(7):786–790PubMedCrossRefPubMedCentralGoogle Scholar
  79. Montero AB, Ubeda NM, García AG (2006) Evaluation of dietary habits of a population of university students in relation with their nutritional knowledge. Nutr Hosp 21(4):466–473Google Scholar
  80. Nawaz MS, Sheikh AS, Nizamani SM, Bhanger MI, Alfridi I (2010) Determination of mineral elements in Jamun fruits (Eugenia jambolana) products. Pak J Food Sci 20(1–4):1–7Google Scholar
  81. Neu J, Shenoy V, Chakrabarti R (1996) Glutamine nutrition and metabolism: where do we go from here? FASEB J 10(8):829–837PubMedCrossRefPubMedCentralGoogle Scholar
  82. Niinivaara FP, Antila P (1973) El valor nutritivo de la carne. AcribiaGoogle Scholar
  83. Noci F, Monahan FJ, French P, Moloney AP (2005) The fatty acid composition of muscle fat and subcutaneous adipose tissue of pasture-fed beef heifers: influence of the duration of grazing. J Anim Sci 83(5):1167–1178PubMedCrossRefPubMedCentralGoogle Scholar
  84. ONIBEV (1979) Catalogue de Classement des Équidés (en carcasse). Office National Interproffessionnel du Betail et des Viandes, Paris CedexGoogle Scholar
  85. Ozawa S, Mitsuhashi T, Mitsumoto M, Matsumoto S, Itoh N, Itagaki K, Dohgo T (2000) The characteristics of muscle fiber types of longissimus thoracis muscle and their influences on the quantity and quality of meat from Japanese Black steers. Meat Sci 54(1):65–70PubMedCrossRefPubMedCentralGoogle Scholar
  86. Palenik S, Blechova H, Palanska O (1980) Chemical composition and quality of meat from Coldblood and Warmblood foals. Živočišná Výroba 25(4):269–277Google Scholar
  87. Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL (2011) Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes-A review. Meat Sci 89(2):111–124PubMedCrossRefPubMedCentralGoogle Scholar
  88. Peplow E (1998) Encyclopedia of the horse, HamlynGoogle Scholar
  89. Polidori P, Cavallucci C, Beghelli D, Vincenzetti S (2009) Physical and chemical characteristics of donkey meat from Martina Franca breed. Meat Sci 82(4):469–471PubMedCrossRefPubMedCentralGoogle Scholar
  90. Polidori P, Vincenzett, S (2013) Meat quality in donkey foals. Ital J Food Sci 25(4):390–393Google Scholar
  91. Polidori P, Pucciarelli S, Ariani A, Polzonetti V, Vincenzetti S (2015) A comparison of the carcass and meat quality of Martina Franca donkey foals aged 8 or 12 months. Meat Sci 106:6–10PubMedCrossRefPubMedCentralGoogle Scholar
  92. Price JF, Schweigert BS (1994) Ciencia de la carne y de los productos cárnicos. Acribia (Spain), Zaragoza, pp 125–129.Google Scholar
  93. Radunz AE, Wickersham LA, Loerch SC, Fluharty FL, Reynolds CK, Zerby HN (2009) Effects of dietary polyunsaturated fatty acid supplementation on fatty acid composition in muscle and subcutaneous adipose tissue of lambs. J Anim Sci 87(12):4082–4091PubMedCrossRefPubMedCentralGoogle Scholar
  94. Raes K, De Smet S, Demeyer D (2004) Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim Feed Sci Technol 113(1–4):199–221CrossRefGoogle Scholar
  95. Ramos A, Cabrera MC, Del Puerto M, Saadoun A (2009) Minerals, haem and non-haem iron contents of rhea meat. Meat Sci 81(1):116–119PubMedCrossRefPubMedCentralGoogle Scholar
  96. Rincker PJ, Killefer J, Ellis M, Brewer MS, McKeith FK (2008) Intramuscular fat content has little influence on the eating quality of fresh pork loin chops. J Anim Sci 86(3):730–737PubMedCrossRefPubMedCentralGoogle Scholar
  97. Robelin J (1978) Bulletin Technique. CRZV Theix INRA 34:31–35Google Scholar
  98. Robelin J, Geay Y, Beranger C, Jailler R, Jailler R (1977) Evolution de la composition corporelle des jeunes bovins mâles entiers de race Limousine entre 9 et 19 mois. I.--Composition anatomique. In Annales de zootechnie 26:533–546CrossRefGoogle Scholar
  99. Robelin J, Boccard R, Martin-Rosset W, Jussiaux M, & Trillaud-Geyl C (1984) Caractéristiques des carcasses et qualités de la viande de cheval. Cheval: reproduction, selection, alimentation, exploitation. XIIIe Journees du Grenier de Theix 25-27 nov 1981, Centre de recherches zootechniques et veterinaires de Theix/coor. par R. Jarrige, W. Martin-RossetGoogle Scholar
  100. Rossier E, Berger C (1988) La viande de cheval: des qualités indiscutables et pourtant méconnues. Cahiers de Nutrition et de Diététique 23(1):35–40Google Scholar
  101. Roth DM, Brewer MS, Bechtel PJ, Kline KH, Mckeith FK (1995) Sensory, color, and composition characteristics of young and mature chevaline. J Mus Foods 6(1):83–89CrossRefGoogle Scholar
  102. Ruiz M, Sarriés MV, Beriain MJ, Crecente S, Domínguez R, Lorenzo JM (2018) Relationship between carcass traits, prime cuts and carcass grading from foals slaughtered at the age of 13 and 26 months and supplemented with standard and linseed-rich feed. Animal 12(5):1084–1092PubMedCrossRefPubMedCentralGoogle Scholar
  103. Rule DC, Broughton KS, Shellito SM, Maiorano G (2002) Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef cattle, elk, and chicken. J Anim Sci 80(5):1202–1211PubMedCrossRefPubMedCentralGoogle Scholar
  104. Russo C, Preziuso G, Casarosa L, Campodoni G, Cianci D (1999) Effect of diet energy source on the chemical–physical characteristics of meat and depot fat of lambs carcasses. Small Rum Res 33(1):77–85CrossRefGoogle Scholar
  105. Sales J, Hayes JP (1996) Proximate, amino acid and mineral composition of ostrich meat. Food Chem 56(2):167–170CrossRefGoogle Scholar
  106. Santos AS, Jerónimo E, Ferreira LM, Rodrigues MAM, Bessa RJB (2013) Fatty acids and purine profile of cecum and colon bacteria as indicators of equine microbial metabolism. J Anim Sci 91(4):1753–1757PubMedCrossRefPubMedCentralGoogle Scholar
  107. Sañudo C, Enser ME, Campo MM, Nute GR, Marıa G, Sierra I, Wood JD (2000) Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci 54(4):339–346PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sarriés MV, Beriain MJ (2005) Carcass characteristics and meat quality of male and female foals. Meat Sci 70(1):141–152PubMedCrossRefPubMedCentralGoogle Scholar
  109. Sarriés MV, Beriain MJ (2006) Colour and texture characteristics in meat of male and female foals. Meat Sci 74(4):738–745PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sarriés MV, Murray BE, Troy D, Beriain MJ (2006) Intramuscular and subcutaneous lipid fatty acid profile composition in male and female foals. Meat Sci 72(3):475–485PubMedCrossRefPubMedCentralGoogle Scholar
  111. Schmid A, Collomb M, Sieber R, Bee G (2006) Conjugated linoleic acid in meat and meat products: a review. Meat Sci 73(1):29–41PubMedCrossRefGoogle Scholar
  112. Scollan ND, Choi NJ, Kurt E, Fisher AV, Enser M, Wood JD (2001) Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br J Nutr 85(1):115–124PubMedCrossRefPubMedCentralGoogle Scholar
  113. Scollan N, Hocquette JF, Nuernberg K, Dannenberger D, Richardson I, Moloney A (2006) Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 74(1):17–33PubMedCrossRefPubMedCentralGoogle Scholar
  114. Segato S, Cozzi G, Andrighetto I (1999) Effect of animal morphotype, sex and age on quality of horse meat imported from Poland. Recent Progress in Animal Production Science: progress, XIII Congress, Piacenza, p 674Google Scholar
  115. Simopoulos AP (2001) N-3 fatty acids and human health: defining strategies for public policy. Lipids 36(S1):S83–S86PubMedCrossRefPubMedCentralGoogle Scholar
  116. Sinclair AJ, Slattery WJ, O'Dea K (1982) The analysis of polyunsaturated fatty acids in meat by capillary gas-liquid chromatography. J Sci Food Agric 33(8):771–776CrossRefGoogle Scholar
  117. Stolowski GD, Baird BE, Miller RK, Savell JW, Sams AR, Taylor JF, Smith SB (2006) Factors influencing the variation in tenderness of seven major beef muscles from three Angus and Brahman breed crosses. Meat Sci 73(3):475–483PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tateo A, De Palo P, Padalino B, Centoducati P (2005) Quality of carcasses in IHDH foals reared in the province of Bari (Italy). Ital J Anim Sci 4(sup2):418–420CrossRefGoogle Scholar
  119. Tateo A, De Palo P, Ceci E, Centoducati P (2008) Physicochemical properties of meat of Italian Heavy Draft horses slaughtered at the age of eleven months. Ital J Anim Sci 86(5):1205–1214CrossRefGoogle Scholar
  120. Teye GA, Sheard PR, Whittington FM, Nute GR, Stewart A, Wood JD (2006) Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci 73(1):157–165PubMedCrossRefPubMedCentralGoogle Scholar
  121. Ulbricht TLV, Southgate DAT (1991) Coronary heart disease: seven dietary factors. Lancet 338(8773):985–992PubMedCrossRefPubMedCentralGoogle Scholar
  122. USDA (2014) National nutrient database for standard reference,
  123. Warris P (2010) Meat science. 2nd edn. An introductory text, CABIGoogle Scholar
  124. Williams DR, Bergstrom PL (1976) Anatomical jointing tissue separation crud weight recording proposed as the E.C.C. standard method for beef. Carcass and quality, 1976. Langford Bristol, Meat Research Institute ARC (UK) pp. 1–26Google Scholar
  125. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Whittington FM (2008) Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 78(4):343–358PubMedCrossRefPubMedCentralGoogle Scholar
  126. Znamirowska A (2005) Prediction of horse carcass composition using linear measurements. Meat Sci 69(3):567–570PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José Manuel Lorenzo
    • 1
    Email author
  • Aristide Maggiolino
    • 2
  • María Victoria Sarriés
    • 3
  • Paolo Polidori
    • 4
  • Daniel Franco
    • 1
  • Massimiliano Lanza
    • 5
  • Pasquale De Palo
    • 6
  1. 1.Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de GaliciaOurenseSpain
  2. 2.Department of Veterinary MedicineUniversity of BariValenzanoItaly
  3. 3.Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros AgrónomosUniversidad Publica de Navarra, Campus de ArrosadíaPamplonaSpain
  4. 4.Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di CamerinoMatelicaItaly
  5. 5.Dipartimento di Agricoltura, Alimentazione e AmbienteUniversità di CataniaCataniaItaly
  6. 6.Department of Veterinary MedicineUniversity of Bari A. MoroValenzanoItaly

Personalised recommendations