Population Dynamics Necessary to Avert Unpopular Norms

  • Arshad Muhammad
  • Kashif Zia
  • Dinesh Kumar Saini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11352)


People lives in the society abide by different norms and sometime these norms are unpopular. Usually, these norms develop within small local community, but later spread out to entire population. It is evidenced that the people not only abide by these norms but also start enforcing in certain situations. It is imperative to know why people enforce a norm they privately oppose. Furthermore, for the overall societal good, many a times, it is necessary to oppose and possibly avert unpopular norms. To achieve this goal, it is necessary to know the conditions, which enable persistence of the unpopular norms and models that support possible aversion of them. This study attempts to elaborate the conditions and reasons for the emergence, spreading and aversion of unpopular norms in society, using theory-driven agent-based simulation. The simulation results reveal that in addition to agents actively participating in averting the unpopular norm, incorporating a rational decision-making model in the population of agents is necessary to achieve a dominant norm aversion.


Agent-based modeling Unpopular norms Emperors dilemma Norm aversion Population dynamics 


  1. 1.
    Aizenman, J., Lee, J.: International reserves: precautionary versus mercantilist views, theory and evidence. Open Econ. Rev. 18(2), 191–214 (2007)CrossRefGoogle Scholar
  2. 2.
    Banerjee, A.V.: A simple model of herd behavior. Q. J. Econ. 107(3), 797–817 (1992)CrossRefGoogle Scholar
  3. 3.
    Bikhchandani, S., Sharma, S.: Herd behavior in financial markets. IMF Staff Pap. 47(3), 279–310 (2000)Google Scholar
  4. 4.
    Blake, C.F.: Foot-binding in neo-Confucian China and the appropriation of female labor. Signs J. Women Cult. Soc. 19(3), 676–712 (1994)CrossRefGoogle Scholar
  5. 5.
    Briggs, W., Cook, D.: Flexible social laws. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 688–693. Lawrence Erlbaum Associates Ltd. (1995)Google Scholar
  6. 6.
    Centola, D., Willer, R., Macy, M.: The emperor’s dilemma: a computational model of self-enforcing norms. Am. J. Sociol. 110(4), 1009–1040 (2005)CrossRefGoogle Scholar
  7. 7.
    Conte, R., Castelfranchi, C.: Are incentives good enough to achieve (info) social order? In: Conte, R., Dellarocas, C. (eds.) Social Order in Multiagent Systems, pp. 45–61. Springer, Heidelberg (2001). Scholar
  8. 8.
    Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm acceptance. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL 1998. LNCS, vol. 1555, pp. 99–112. Springer, Heidelberg (1999). Scholar
  9. 9.
    Hughes, D.O.: From brideprice to dowry in Mediterranean Europe. J. Fam. Hist. 3(3), 262–296 (1978)CrossRefGoogle Scholar
  10. 10.
    Katz, D., Allport, F.H., Jenness, M.B.: Students’ attitudes; a report of the Syracuse University reaction study (1931)Google Scholar
  11. 11.
    Khondker, H.H.: Role of the new media in the Arab spring. Globalizations 8(5), 675–679 (2011)CrossRefGoogle Scholar
  12. 12.
    Kretz, T., Schreckenberg, M.: Moore and more and symmetry. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2005, pp. 297–308. Springer, Heidelberg (2007). Scholar
  13. 13.
    Kuran, T.: The inevitability of future revolutionary surprises. Am. J. Sociol. 100(6), 1528–1551 (1995)CrossRefGoogle Scholar
  14. 14.
    Kuran, T.: Private Truths, Public Lies: The Social Consequences of Preference Falsification. Harvard University Press, Cambridge (1997)Google Scholar
  15. 15.
    Lux, T.: Herd behaviour, bubbles and crashes. Econ. J. 881–896 (1995)CrossRefGoogle Scholar
  16. 16.
    Macal, C., North, M.: Introductory tutorial: agent-based modeling and simulation. In: Proceedings of the 2014 Winter Simulation Conference, pp. 6–20. IEEE Press (2014)Google Scholar
  17. 17.
    Macy, M., Flache, A.: Social dynamics from the bottom up: agent-based models of social interaction. In: The Oxford Handbook of Analytical Sociology, pp. 245–268 (2009)Google Scholar
  18. 18.
    Makowsky, M.D., Rubin, J.: An agent-based model of centralized institutions, social network technology, and revolution. PloS one 8(11), e80380 (2013)CrossRefGoogle Scholar
  19. 19.
    Meneguzzi, F., Rodrigues, O., Oren, N., Vasconcelos, W.W., Luck, M.: BDI reasoning with normative considerations. Eng. Appl. Artif. Intell. 43, 127–146 (2015)CrossRefGoogle Scholar
  20. 20.
    Merdes, C., et al.: Growing unpopular norms. J. Artif. Soc. Soc. Simul. 20(3), 1–5 (2017)CrossRefGoogle Scholar
  21. 21.
    Merton, R.K.: The matthew effect in science: the reward and communication systems of science are considered. Science 159(3810), 56–63 (1968)CrossRefGoogle Scholar
  22. 22.
    Miller, D.T., McFarland, C.: Pluralistic ignorance: when similarity is interpreted as dissimilarity. J. Pers. Soc. Psychol. 53(2), 298 (1987)CrossRefGoogle Scholar
  23. 23.
    Morrow, P.: The thesis of norm transformation in the theory of mass atrocity. Genocide Stud. Prev. Int. J. 9(1), 8 (2015)Google Scholar
  24. 24.
    Muhammad, A., Zia, K., Saini, D.K.: Agent-based simulation of socially-inspired model of resistance against unpopular norms. In: Proceedings of the 10th International Conference on Agents and Artificial Intelligence, ICAART, vol. 1, pp. 133–139. INSTICC, SciTePress (2018).
  25. 25.
    Neighbors, C., et al.: Injunctive norms, deviance regulation, and social norms interventions. Alcohol. Clin. Exp. Res. 39, 292A (2015)Google Scholar
  26. 26.
    Nkomo, S.M.: The emperor has no clothes: rewriting “race in organizations”. Acad. Manag. Rev. 17(3), 487–513 (1992)Google Scholar
  27. 27.
    Ostrom, E.: Collective action and the evolution of social norms. J. Nat. Resour. Policy Res. 6(4), 235–252 (2014)CrossRefGoogle Scholar
  28. 28.
    Prentice, D.A., Miller, D.T.: Pluralistic ignorance and alcohol use on campus: some consequences of misperceiving the social norm. J. Pers. Soc. Psychol. 64(2), 243 (1993)CrossRefGoogle Scholar
  29. 29.
    Sanchez-Anguix, V., Julian, V., Botti, V., García-Fornes, A.: Tasks for agent-based negotiation teams: analysis, review, and challenges. Eng. Appl. Artif. Intell. 26(10), 2480–2494 (2013)CrossRefGoogle Scholar
  30. 30.
    Sato, T., Hashimoto, T.: Dynamic social simulation with multi-agents having internal dynamics. In: Sakurai, A., Hasida, K., Nitta, K. (eds.) JSAI 2003-2004. LNCS (LNAI), vol. 3609, pp. 237–251. Springer, Heidelberg (2007). Scholar
  31. 31.
    Tisue, S., Wilensky, U.: NetLogo: a simple environment for modeling complexity. In: International Conference on Complex Systems, Boston, MA, vol. 21, pp. 16–21 (2004)Google Scholar
  32. 32.
    Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multiagent systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004). Scholar
  33. 33.
    Vouros, G.A.: The emergence of norms via contextual agreements in open societies. In: Koch, F., Guttmann, C., Busquets, D. (eds.) Advances in Social Computing and Multiagent Systems. CCIS, vol. 541, pp. 185–201. Springer, Cham (2015). Scholar
  34. 34.
    Willer, R., Kuwabara, K., Macy, M.W.: The false enforcement of unpopular norms. Am. J. Sociol. 115(2), 451–490 (2009)CrossRefGoogle Scholar
  35. 35.
    Zareen, Z., Zafar, M., Zia, K.: Conditions facilitating the aversion of unpopular norms: an agent-based simulation study. Int. J. Adv. Comput. Sci. Appl. 7(7), 499–505 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arshad Muhammad
    • 1
  • Kashif Zia
    • 1
  • Dinesh Kumar Saini
    • 1
  1. 1.Faculty of Computing and Information TechnologySohar UniversitySoharOman

Personalised recommendations