A Unified Comparative Study of Heuristic Algorithms for Double Combinatorial Auctions: Locality-Constrained Resource Allocation Problems

  • Diana GuduEmail author
  • Marcus Hardt
  • Achim Streit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11352)


Market-oriented resource allocation in cloud computing is driven by increasingly stringent needs for flexibility, fine-grained allocation, and more critically, revenue maximization. Double combinatorial auctions aptly address these demands, but their \(\mathcal {NP}\)-hardness has hindered them from being widely adopted. Heuristic algorithms, with their input-dependent performance and solution quality, have failed to offer a robust alternative. We posit that a unifying approach for evaluating all existing algorithms, under the umbrella of a consistent problem formulation and a variety of common test cases, can propel combinatorial auctions towards real-world usage.

In this paper, we performed an extensive empirical evaluation of a portfolio of heuristic algorithms for double combinatorial auctions, applied to problems with hard resource locality constraints. We found that there is no single algorithm that outperforms the others in all test scenarios. However, we offer insights into the behavior of the algorithms, and provide methods to explore the portfolio’s performance over a wide range of input scenarios.


Combinatorial auction Resource allocation Cloud computing Heuristic algorithm Benchmarking 


  1. 1.
    Smith, D.M.: Predicts 2017: cloud computing enters its second decade. Gartner Special Report (2017)Google Scholar
  2. 2.
    Rappa, M.A.: The utility business model and the future of computing services. IBM Syst. J. 43, 32–42 (2004). Scholar
  3. 3.
    De Vries, S., Vohra, R.V.: Combinatorial auctions: a survey. INFORMS J. Comput. 15, 284–309 (2003). Scholar
  4. 4.
    Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision, hype, and reality for delivering it services as computing utilities. In: 2008 10th IEEE International Conference on High Performance Computing and Communications. HPCC 2008, pp. 5–13. IEEE (2008).
  5. 5.
    Amazon: Amazon EC2 pricing (2017). Accessed 3 Nov 2018
  6. 6.
    Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of combinatorial auctions: optimal and approximate approaches. IJCAI 99, 548–553 (1999)Google Scholar
  7. 7.
    Nejad, M.M., Mashayekhy, L., Grosu, D.: Truthful greedy mechanisms for dynamic virtual machine provisioning and allocation in clouds. IEEE Trans. Parallel Distrib. Syst. 26, 594–603 (2015). Scholar
  8. 8.
    Lehmann, D., Oćallaghan, L.I., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. J. ACM (JACM) 49, 577–602 (2002). Scholar
  9. 9.
    Holte, R.C.: Combinatorial auctions, knapsack problems, and hill-climbing search. In: Stroulia, E., Matwin, S. (eds.) AI 2001. LNCS (LNAI), vol. 2056, pp. 57–66. Springer, Heidelberg (2001). Scholar
  10. 10.
    Zurel, E., Nisan, N.: An efficient approximate allocation algorithm for combinatorial auctions. In: Proceedings of the 3rd ACM Conference on Electronic Commerce, pp. 125–136. ACM (2001).
  11. 11.
    Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search. In: AAAI/IAAI, pp. 22–29 (2000)Google Scholar
  12. 12.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4, 63–86 (1998). Scholar
  13. 13.
    Khuri, S., Bäck, T., Heitkötter, J.: The zero/one multiple knapsack problem and genetic algorithms. In: Proceedings of the 1994 ACM Symposium on Applied Computing, pp. 188–193. ACM (1994).
  14. 14.
    Bertocchi, M., Butti, A., Słomiñ ski, L., Sobczynska, J.: Probabilistic and deterministic local search for solving the binary multiknapsack problem. Optimization 33, 155–166 (1995). Scholar
  15. 15.
    Gudu, D., Zachmann, G., Hardt, M., Streit, A.: Approximate algorithms for double combinatorial auctions for resource allocation in clouds: an empirical comparison. In: Proceedings of the 10th International Conference on Agents and Artificial Intelligence - ICAART, INSTICC, vol. 1, pp. 58–69. SciTePress (2018).
  16. 16.
    Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 66–76. ACM (2000).
  17. 17.
    Lehmann, D., Müller, R., Sandholm, T.: The winner determination problem. In: Combinatorial Auctions, pp. 297–318 (2006). Scholar
  18. 18.
    Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2008). Scholar
  19. 19.
    Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services-a multi-attribute combinatorial approach. Eur. J. Oper. Res. 187, 943–961 (2008). Scholar
  20. 20.
    Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading. J. Econ. Theory 29, 265–281 (1983). Scholar
  21. 21.
    Nisan, N., et al.: Introduction to mechanism design (for computer scientists). Algorithmic Game Theory 9, 209–242 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pfeiffer, J., Rothlauf, F.: Greedy heuristics and weight-coded eas for multidimensional knapsack problems and multi-unit combinatorial auctions. In: Kalcsics, J., Nickel, S. (eds.) Operations Research Proceedings 2007, pp. 153–158. Springer, Heidelberg (2008). Scholar
  23. 23.
    Gonen, R., Lehmann, D.: Optimal solutions for multi-unit combinatorial auctions: branch and bound heuristics. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 13–20. ACM (2000).
  24. 24.
    Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991). Scholar
  25. 25.
    IBM: ILOG CPLEX 12.6.3 (2017). Accessed 3 Nov 2018
  26. 26.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Greedy algorithms. In: Introduction to Algorithms, vol. 1, pp. 329–355 (2001)Google Scholar
  27. 27.
    Russell, S., Norvig, P.: Beyond classical search. In: Artificial Intelligence, A Modern Approach, pp. 125–128 (2010)Google Scholar
  28. 28.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220, 671–680 (1983). Scholar
  29. 29.
    Sandholm, T.: An algorithm for optimal winner determination in combinatorial auctions. Artif. Intell. 135, 1–54 (2002). Scholar
  30. 30.
    Deb, K.: Multi-objective optimization. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 403–449 (2014). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations