Best Practice

  • Ratna Tantra


As a scientist, you will want to produce high-quality experimental results. One way to achieve this is through the use of best practice. Undoubtedly, different scientific disciplines will have their own best practices. Hence, it is not the intent of this chapter to deal with best practice that covers all eventualities in every discipline. Nonetheless, there are some best practices that are generic in nature, in which all scientists should be familiar with. As such, I will be covering best practice approaches on method development, method validation, data analysis, how to achieve quality assurance and how to record information into laboratory books.


Best practice Method development Method validation Quality assurance Reference materials Round robin Standard documents Errors Uncertainty Traceability Statistic Data analysis 


  1. Ahuja, S., & Dong, M. W. (2005). Handbook of pharmaceutical analysis by HPLC. Cambridge: Elsevier Academic Press.CrossRefGoogle Scholar
  2. Bentley, R. E. (1998). Handbook of temperature measurement. Berlin: Springer.Google Scholar
  3. Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin: Springer.Google Scholar
  4. Bliesner, D. M. (2006). Validating chromatographic methods: A practical guide. Hoboken: Wiley.CrossRefGoogle Scholar
  5. Bundesanstalt für Materialforschung und -prüfung (BAM) - RRR - COMAR Overview. (n.d.). Retrieved October 6, 2017, from
  6. Campbell, R. C. (Richard C. (1989). Statistics for biologists. Cambridge University Press Cambridge.CrossRefGoogle Scholar
  7. Certification & Audit Services | Bureau Veritas Certification. (n.d.). Retrieved October 6, 2017, from
  8. Chan, C. C. (2004). Analytical method validation and instrument performance verification. Hoboken: John Wiley & Sons.CrossRefGoogle Scholar
  9. Chan, C. C., Lam, H., & Zhang, X.-M. (2011). Practical approaches to method validation and essential instrument qualification. Hoboken: John Wiley & Sons.Google Scholar
  10. Cole, T. J. (2015). Too many digits: the presentation of numerical data. Archives of Disease in Childhood, 100(7), 608–609. Scholar
  11. Conti, M. E. (2008). Biological monitoring: Theory & applications—Bioindicators and biomarkers for environmental quality and human exposure assessment. Southampton: WIT.Google Scholar
  12. De Bièvre, P., & Günzler, H. (2003). Measurement uncertainty in chemical analysis. Berlin: Springer.CrossRefGoogle Scholar
  13. De Bièvre, P., & Güzler, H. (2005). Traceability in chemical measurement. Berlin: Springer.CrossRefGoogle Scholar
  14. Dulski, T. R. (1996). A manual for the chemical analysis of metals. West Conshohocken: ASTM.CrossRefGoogle Scholar
  15. Ermer, J. (2015). Method validation in pharmaceutical analysis: A guide to best practice. Weinheim: Wiley-VCH.Google Scholar
  16. Ermer, J., & Miller, J. H. M. (2005). Method validation in pharmaceutical analysis: A guide to best practice. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  17. Eskes, C., & Whelan, M. (2016). Validation of alternative methods for toxicity testing.Google Scholar
  18. Fajgelj, A., & Ambrus, A. (2000). Principles and practices of method validation. London: Royal Society of Chemistry.CrossRefGoogle Scholar
  19. Fukunaga, K. (1990). Introduction to statistical pattern recognition. Cambridge: Academic Press.Google Scholar
  20. Graham, A. (2017). Statistics: An introduction. London: Teach Yourself.Google Scholar
  21. Graves, H., & Graves, R. (2007). A strategic guide to technical communication. Peterborough: Broadview Press.Google Scholar
  22. Günzler, H. (1996). Accreditation and quality assurance in analytical chemistry. Berlin: Springer.CrossRefGoogle Scholar
  23. Heaton, H. (1982). Proceedings of a meeting on traceability for ionizing radiation measurements. Washington, DC: U.S. Government Printing Office.CrossRefGoogle Scholar
  24. Hester, R. E., & Harrison, R. M. (2006). Alternatives to animal testing. London: Royal Society of Chemistry.CrossRefGoogle Scholar
  25. Hunt, L., Robitaille, D. E., & Williams, C. (2008). The insiders’ guide to ISO 9001:2008. California: Paton Professional.Google Scholar
  26. Kanare, H. M. (1985). Writing the laboratory notebook. Washington, DC: American Chemical Society.Google Scholar
  27. Konieczka, P., & Namieśnik, J. (2009). Quality assurance and quality control in the analytical chemical laboratory: A practical approach. Boca Raton: CRC Press.Google Scholar
  28. Kozak, A. (2008). Introductory probability and statistics: Applications for forestry and natural sciences. Wallingford: Cab International.CrossRefGoogle Scholar
  29. Lewis, I. R., & Edwards, H. G. M. (2001). Handbook of Raman spectroscopy: From the research laboratory to the process line. New York: Marcel Dekker.CrossRefGoogle Scholar
  30. Lista, L. (2016). Statistical methods for data analysis in particle physics. Berlin: Springer.CrossRefGoogle Scholar
  31. Los Alamos National Laboratory, U. S. (2012). Uncertainty budget analysis for dimensional inspection processes. US: Los Alamos National Laboratory.Google Scholar
  32. McCormick, D., Roach, A., Chapman, N. B. (Norman B., & ACOL (Project). (1987). Measurement, statistics, and computation. ACOL by Wiley, London.Google Scholar
  33. Miller, J. N., & Miller, J. C. (2018). Statistics and chemometrics for analytical chemistry. Carmel: Pearson Higher Education.Google Scholar
  34. Murphy, C., & Yates, J. (2009). The International Organization for Standardization (ISO): Global governance through voluntary consensus. Abingdon: Routledge.CrossRefGoogle Scholar
  35. Myers, R. L. (2003). The basics of chemistry. Westport: Greenwood Press.Google Scholar
  36. Nally, J. D. (2007). Good manufacturing practices for pharmaceuticals. London: Informa Healthcare.Google Scholar
  37. National Research Council (U.S.). Committee on Reference Materials for Ocean Science. (2002). Chemical reference materials: Setting the standards for ocean science. Washington, DC: National Academies Press.Google Scholar
  38. Navidi, W. C. (2010). Principles of statistics for engineers and scientists. New York: McGraw-Hill.Google Scholar
  39. Osborne, J. W. (2008). Best practices in quantitative methods. Thousand Oaks: Sage Publications.CrossRefGoogle Scholar
  40. Seaver, M. (2003). Gower handbook of quality management. Farnham: Gower Publishing Ltd.Google Scholar
  41. Smith, G. T. (2002). Industrial metrology: Surfaces and roundness. London: Springer.CrossRefGoogle Scholar
  42. Snyder, L. R., Kirkland, J. J., & Glajch, J. L. (1997). Practical HPLC method development. Hoboken: Wiley.CrossRefGoogle Scholar
  43. Special Programme for Research and Training in Tropical Diseases, & World Health Organization. (2009). Quality practices for regulated non-clinical research and development. Geneva: WHO on behalf of the Special Programme for Research and Training in Tropical Diseases.Google Scholar
  44. Standards, Training, Testing, Assessment and Certification | BSI Group. (n.d.). Retrieved October 6, 2017, from
  45. Tantra, R. (2016). Nanomaterial characterization: An introduction. Hoboken: Wiley.CrossRefGoogle Scholar
  46. Walker, R., Barwick, V., Bedson, P., Brookman, B., Burke, S., Lawn, R. E., et al. (2007). Applications of reference materials in analytical chemistry. London: Royal Society of Chemistry.Google Scholar
  47. Willink, R. (2013). Measurement uncertainty and probability. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  48. Zhou, M. (2011). Regulated bioanalytical laboratories technical and regulatory aspects from global perspectives. Hoboken: Wiley.CrossRefGoogle Scholar
  49. Zschunke, A. (2013). Reference materials in analytical chemistry: A guide for selection and use. Berlin: Springer Science & Business Media.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ratna Tantra
    • 1
  1. 1.PortsmouthUK

Personalised recommendations