Advertisement

Age Related Topological Analysis of Synchronization-Based Functional Connectivity

  • Angela Lombardi
  • Nicola Amoroso
  • Domenico Diacono
  • Eufemia Lella
  • Roberto Bellotti
  • Sabina Tangaro
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)

Abstract

Network-based analysis methods of resting state fMRI data have revealed important aspects on the organization of the human brain. However, most of the known methods for quantifying functional coupling between fMRI time series are focused on linear correlation metrics. In this work, we used a synchronization index defined in the phase space of BOLD signals of a cohort of healthy subjects to construct their functional connectivity matrices. A regression analysis is then performed to identify age-related topological changes of synchronization-based functional connectivity. The results show that several brain regions exhibit significant age correlation, thus synchronization-based connectivity could be further be explored to investigate developmental and life-span trajectories.

Keywords

Functional connectivity Synchronization fMRI Cross-recurrence plots Neurodevelopment Graph analysis 

References

  1. 1.
    Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control. 19(6), 716–723 (1974)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336–349 (2012)CrossRefGoogle Scholar
  3. 3.
    Cao, M., et al.: Topological organization of the human brain functional connectome across the lifespan. Dev. Cogn. Neurosci. 7, 76–93 (2014)CrossRefGoogle Scholar
  4. 4.
    Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Neuroinformatics (2013)Google Scholar
  5. 5.
    Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659 (2014)Google Scholar
  6. 6.
    Fornito, A., Zalesky, A., Bullmore, E.: Fundamentals of Brain Network Analysis. Academic Press (2016)Google Scholar
  7. 7.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hirata, Y., Horai, S., Aihara, K.: Reproduction of distance matrices and original time series from recurrence plots and their applications. Eur. Phys. J. Spec. Top. 164(1), 13–22 (2008)CrossRefGoogle Scholar
  9. 9.
    Humphries, M.D., Gurney, K.: Network small-world-ness: a quantitative method for determining canonical network equivalence. PloS one 3(4), e0002051 (2008)Google Scholar
  10. 10.
    Jalili, M.: Functional brain networks: does the choice of dependency estimator and binarization method matter? Sci. Rep. 6, 29,780 (2016)CrossRefGoogle Scholar
  11. 11.
    Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403 (1992)CrossRefGoogle Scholar
  12. 12.
    La Corte, V., et al.: Cognitive decline and reorganization of functional connectivity in healthy aging: the pivotal role of the salience network in the prediction of age and cognitive performances. Front. Aging Neurosci. 8, 204 (2016)CrossRefGoogle Scholar
  13. 13.
    Lombardi, A., et al.: A novel synchronization-based approach for functional connectivity analysis. Complexity 2017 (2017)Google Scholar
  14. 14.
    Marwan, N., Kurths, J.: Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302(5), 299–307 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: Generank: using search engine technology for the analysis of microarray experiments. BMC Bioinform. 6(1), 233 (2005)CrossRefGoogle Scholar
  17. 17.
    Pereda, E., Quiroga, R.Q., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Progr. Neurobiol. 77(1), 1–37 (2005)CrossRefGoogle Scholar
  18. 18.
    Shah, C., et al.: Age related changes in topological properties of brain functional network and structural connectivity. Front. Neurosci. 12, 318 (2018)Google Scholar
  19. 19.
    Sporns, O.: The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224(1), 109–125 (2011)CrossRefGoogle Scholar
  20. 20.
    Stam, C.J.: Nonlinear dynamical analysis of eeg and meg: review of an emerging field. Clin. Neurophysiol. 116(10), 2266–2301 (2005)CrossRefGoogle Scholar
  21. 21.
    Takens, F.: In: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer, Berlin (1981)Google Scholar
  22. 22.
    Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1), 273–289 (2002)Google Scholar
  23. 23.
    Webber Jr., C.L., Marwan, N.: Recurrence Quantification Analysis. Springer, Cham (2015)Google Scholar
  24. 24.
    Wu, K., et al.: Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence. PloS one 8(2), e55347 (2013)Google Scholar
  25. 25.
    Zbilut, J.P., Thomasson, N., Webber, C.L.: Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 24(1), 53–60 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Angela Lombardi
    • 1
  • Nicola Amoroso
    • 1
    • 2
  • Domenico Diacono
    • 1
  • Eufemia Lella
    • 1
    • 2
  • Roberto Bellotti
    • 1
    • 2
  • Sabina Tangaro
    • 1
  1. 1.Istituto Nazionale di Fisica NucleareBariItaly
  2. 2.Dipartimento Interateneo di Fisica“M. Merlin”Università degli Studi di Bari “A. Moro”BariItaly

Personalised recommendations