Multi-omic Network Regression: Methodology, Tool and Case Study

  • Vandan ParmarEmail author
  • Pietro Lió
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


The analysis of biological networks is characterized by the definition of precise linear constraints used to cumulatively reduce the solution space of the computed states of a multi-omic (for instance metabolic, transcriptomic and proteomic) model. In this paper, we attempt, for the first time, to combine metabolic modelling and networked Cox regression, using the metabolic model of the bacterium Helicobacter Pylori. This enables a platform both for quantitative analysis of networked regression, but also testing the findings from network regression (a list of significant vectors and their networked relationships) on in vivo transcriptomic data. Data generated from the model, using flux balance analysis to construct a Pareto front, specifically, a trade-off of Oxygen exchange and growth rate and a trade-off of Carbon Dioxide exchange and growth rate, is analysed and then the model is used to quantify the success of the analysis. It was found that using the analysis, reconstruction of the initial data was considerably more successful than a pure noise alternative. Our methodological approach is quite general and it could be of interest for the wider community of complex networks researchers; it is implemented in a software tool, MoNeRe, which is freely available through the Github platform.

Supplementary material


  1. 1.
    Amin, S.M., Wollenberg, B.: Toward a smart grid: power delivery for the 21st century. IEEE Power Energy Magaz. 3(5), 34–41 (2005).
  2. 2.
    Angione, C.: Integrating splice-isoform expression into genome-scale models characterizes breast cancer metabolism. Bioinformatics 34(3), 494–501 (2017).
  3. 3.
    Angione, C., Lió, P.: Predictive analytics of environmental adaptability in multi-omic network models. Sci. Rep. 5(1), 15,147 (2015).,
  4. 4.
    Angione, C., Pratanwanich, N., Lió, P.: A Hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation. ACS Synth. Biol. 4(8), 880–889 (2015).
  5. 5.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010).,
  6. 6.
    Blaser, M.J.: Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep. 7(10), 956–60 (2006).,,
  7. 7.
    Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004).
  8. 8.
    Chien, C.C., Zhang, Y., Ioannou, P.A.: Traffic density control for automated highway systems. Automatica 33(7), 1273–1285 (1997).,
  9. 9.
    Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.) 34(2), 187–220 (1972).
  10. 10.
    Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17, 1–5 (2016).
  11. 11.
    Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: COBRApy: constraints-based reconstruction and analysis for python. BMC Syst. Biol. 7(1), 74 (2013).
  12. 12.
    Farhangi, H.: The path of the smart grid. IEEE Power Energy Magaz. 8(1), 18–28 (2010).
  13. 13.
    Forman, D., et al.: Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ (Clin. Res. Ed.) 302(6788), 1302–5 (1991).,,
  14. 14.
    Gomez, J.A., Barton, P.I.: Dynamic flux balance analysis using DFBAlab, pp. 353–370 (2017).
  15. 15.
    Iuliano, A., Occhipinti, A., Angelini, C., De Feis, I., Lió, P.: Cancer markers selection using network-based cox regression: a methodological and computational practice. Front. Physiol. 7, 208 (2016).,,
  16. 16.
    Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958).
  17. 17.
    King, Z.A., et al.: BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44(D1), D515–D522 (2016).
  18. 18.
    Le Novère, N.: The long journey to a systems biology of neuronal function. BMC Syst. Biol. 1, 28 (2007).,,
  19. 19.
    Li, C., Li, H.: Variable selection and regression analysis for graph-structured covariates with an application to genomics. Ann. Appl. Stat. 4(3), 1498–1516 (2010)., arXiv:1011.3360.pdf
  20. 20.
    Marshall, B., Warren, R.: Unidentified curved bacilli in the stomach of patients with peptic ulceration. Lancet 323(8390), 1311–1315 (1984).,
  21. 21.
    Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010).,
  22. 22.
    Sambamoorthy, G., Raman, K.: Understanding the evolution of functional redundancy in metabolic networks. Bioinformatics 34(17), i981–i987 (2018).
  23. 23.
    Sierksma, G.: Linear and Integer Programming: Theory and Practice, Second Edition. Advances in Applied Mathematics. Taylor & Francis (2001).
  24. 24.
    Thiele, I., Vo, T.D., Price, N.D., Palsson, B.O.: Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol. 187(16), 5818–5830 (2005).,,,
  25. 25.
    Tomita, M., et al.: E-CELL: software environment for whole-cell simulation. Bioinformatics 15(1), 72–84 (1999).
  26. 26.
    Weisstein, E.W.: Laplacian Matrix.
  27. 27.
    Zhang, W., Ota, T., Shridhar, V., Chien, J., Wu, B., Kuang, R.: Network-based survival analysis reveals subnetwork signatures for predicting outcomes of Ovarian Cancer treatment. PLoS Comput. Biol. 9(3), e1002975 (2013). Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  1. 1.University of CambridgeCambridgeUK

Personalised recommendations