Phase Transitions in Spatial Networks as a Model of Cellular Symbiosis

  • Philip TeeEmail author
  • Allan Balmain
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


Random Geometric or Spatial Graphs, are well studied models of networks where spatial embedding is an important consideration. However, the dynamic evolution of such spatial graphs is less well studied, at least analytically. Indeed when distance preference is included the principal studies have largely been simulations. An important class of spatial networks has application in the modeling of cell symbiosis in certain tumors, and, when modeled as a graph naturally introduces a distance preference characteristic of the range of cell to cell interaction. In this paper we present theoretical analysis, and, experimental simulations of such graphs, demonstrating that distance functions that model the mixing of the cells, can create phase transitions in connectivity, and thus cellular interactions. This is an important result that could provide analytical tools to model the transition of tumors from benign to malignant states, as well as a novel class of spatial network evolution.



The authors would like to thank Prof. Istvan Z. Kiss for many helpful comments whilst preparing the manuscript, in particular discussion of the network model.


  1. 1.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74 (2002)Google Scholar
  2. 2.
    G. B. a. L. Barabási., : Competition and multiscaling in evolving networks. Europhys. Lett. 54, 13 (2000)Google Scholar
  3. 3.
    Barthélemy, M.: Crossover from scale-free to spatial networks. Europhys. Lett. 63(6), 915–921 (2003)CrossRefGoogle Scholar
  4. 4.
    Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bianconi, G.: Rare events and discontinuous percolation transitions. 022314, 1–11 (2017)Google Scholar
  6. 6.
    Bianconi, G., Barabási, A.-L.: Bose-Einstein Condensation in Complex Networks. Phys. Rev. Lett. 86(24), 5632–5635 (2001)CrossRefGoogle Scholar
  7. 7.
    Broido, A.D., Clauset, A.: Scale-free networks are rare. 26–28 (2018)Google Scholar
  8. 8.
    Calbo, J., van Montfort, E., Proost, N., van Drunen, E., Beverloo, H.B., Meuwissen, R., Berns, A.: A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19(2), 244–256 (2011)CrossRefGoogle Scholar
  9. 9.
    Cleary, A.S., Leonard, T.L., Gestl, S.A., Gunther, E.J.: Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508(1), 113–117 (2014)CrossRefGoogle Scholar
  10. 10.
    Dall, J., Christensen, M.: Random geometric graphs. 1–9 (2002)Google Scholar
  11. 11.
    Dettmann, C.P., Georgiou, O.: Random geometric graphs with general connection functions. Phys. Rev. E 93(3), 1–16 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. 80 (2007)Google Scholar
  13. 13.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)CrossRefGoogle Scholar
  14. 14.
    Georgiou, O., Dettmann, C., Coon, J.: K-connectivity for confined random networks. 103:1–6 (2013). arXiv preprint arXiv:1304.1329
  15. 15.
    Good, B.H., McDonald, M.J., Barrick, J.E., Lenski, R.E., Desai, M.M.: The dynamics of molecular evolution over 60,000 generations. Nature 551(7678), 45–50 (2017)CrossRefGoogle Scholar
  16. 16.
    Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481(7381), 306–313 (2012)CrossRefGoogle Scholar
  17. 17.
    Hanahan, D., Weinberg, R.A.: Cell - Hallmarks of cancer: the next generation. Cell, Volume 144, Issue 5, 646-674, 4 March 2011 144(5), 646–674 (2011)Google Scholar
  18. 18.
    Heppner, G.H.: Tumor heterogeneity. Cancer Res. 44(6), 2259–2265 (1984)Google Scholar
  19. 19.
    Lim, J.S., et al.: Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 545(7654), 360–364 (2017)Google Scholar
  20. 20.
    Manna, S.S., Sen, P.: Modulated scale-free network in Euclidean space. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 66(6), 4 (2002)Google Scholar
  21. 21.
    Ostilli, M., Bianconi, G.: Statistical mechanics of random geometric graphs: geometry-induced first-order phase transition. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91(4), 1–14 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70(6 2):1–13 (2004)Google Scholar
  23. 23.
    Reeves, M.Q., Kandyba, E., Harris, S., Del Rosario, R., Balmain, A.: Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20(6), 699–709 (2018)CrossRefGoogle Scholar
  24. 24.
    Rozenfeld, A.F., Cohen, R., Ben-Avraham, D., Havlin, S.: Scale-free networks on lattices. Phys. Rev. Lett. 89(21), 2–5 (2002)CrossRefGoogle Scholar
  25. 25.
    Schrödinger, E.: Statistical thermodynamics. Courier Corporation (1989)Google Scholar
  26. 26.
    Sen, P., Banerjee, K., Biswas, T.: Phase transitions in a network with a range-dependent connection probability. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 66(3), 1–4 (2002)Google Scholar
  27. 27.
    Tabata, T.: Morphogens, their identification and regulation. Development 131(4), 703–712 (2004)CrossRefGoogle Scholar
  28. 28.
    Tammela, T., et al.: A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545(7654), 355–359 (2017)CrossRefGoogle Scholar
  29. 29.
    Tee, P., Wakeman, I., Parisis, G., Dawes, J., Kiss, I.: Constraints and entropy in a model of network evolution. Eur. Phys. J. B 90(11) (2017)Google Scholar
  30. 30.
    Wright, S.: The shifting balance theory and macroevolution. Ann. Rev. Genet. 16(1), 1–20 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Philip Tee University of SussexBrightonUK
  2. 2.Beyond Center, Arizona State UniversityTempeUSA
  3. 3.Allan Balmain UCSF Helen Diller Family Comprehensive Cancer CenterSan FranciscoUSA

Personalised recommendations