Comparison of BiClusO with Five Different Biclustering Algorithms Using Biological and Synthetic Data

  • Mohammad Bozlul Karim
  • Shigehiko Kanaya
  • Md. Altaf-Ul AminEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


Over the past decade, different biclustering techniques have been widely used in analyzing bipartite relationship dataset in biology. According to different comparison studies, the performance of these algorithms vary upon dataset size, pattern, and property which makes it difficult for a researcher to take the right decision for selecting a good biclustering algorithm. In this work, we compare our previously developed biclustering algorithm BiClusO with five different algorithms using biological and synthetic data and evaluate the performances. We use data folding mechanism to convert the biclustering problem to a simple graph clustering problem where polynomial heuristic algorithm DPClusO is used. Using two different scoring methods, the performance of our algorithm is evaluated. Our algorithm shows the best performance over the selected five biclustering algorithms.


Bicluster Cluster Gene Condition Species Volatile organic compound 



This work was supported by the National Bioscience Database Center in Japan; the Ministry of Education,Culture, Sports, Science, and Technology of Japan (16K07223 and 17K00406), NAIST Big Data Project and Platform Project for Supporting Drug Discovery and Life Science Research funded by Japan Agency for Medical Research and Development


  1. 1.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp. 93–103 (2000)Google Scholar
  2. 2.
    Laura, L., Owen, A.: Plaid models for gene expression data. Stat. Sin. 12, 61–86 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Preli, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)CrossRefGoogle Scholar
  4. 4.
    Murali, T. M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. Biocomputing 2003, pp. 77–88 (2002)Google Scholar
  5. 5.
    Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)CrossRefGoogle Scholar
  6. 6.
    Li, G., Ma, Q., Tang, H., Paterson, A.H., Ying, X.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucl. Acids Res. 37(15), e101–e101 (2009)CrossRefGoogle Scholar
  7. 7.
    Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Phys. Rev. E 67(3), 031902 (2003)CrossRefGoogle Scholar
  8. 8.
    Hochreiter, S., et al.: FABIA: factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–1527 (2010)Google Scholar
  9. 9.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl): S136–S144 (2002)Google Scholar
  10. 10.
    Eren, K., Deveci, M., KüçKüktunç, O., Çatalyurek, KÜ.V.: A comparative analysis of biclustering algorithms for gene expression data. Brief. Bioinform. 14(3), 279–292 (2012)Google Scholar
  11. 11.
    Li, L., Guo, Y., Wenwu, W., Shi, Y., Cheng, J., Tao, S.: A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data. BioData Min. 5(1), 8 (2012)CrossRefGoogle Scholar
  12. 12.
    Kaiser, S.: Package biclust, Title bicluster algorithms, Version 2.0.1, Date 2018-06-09Google Scholar
  13. 13.
    van Uitert, M., Meuleman, W., Wessels, L.: Biclustering sparse binary genomic data. J. Comput. Biol. 15(10), 1329–1345 (2008)Google Scholar
  14. 14.
    Altaf-Ul-Amin, Md., Wada, M., Kanaya, S.: Partitioning a PPI network into overlapping modules constrained by high-density and periphery tracking. ISRN Biomath. 2012 (2012)Google Scholar
  15. 15.
    Karim, M.B., Ono, N., Altaf-Ul-Amin, Md., Kanaya, S.: Classification of species by biclustering based on emitting volatile organic compounds. In: APBC 2018 Conference. Yokohama, Japan, 15–17 Jan 2018Google Scholar
  16. 16.
    Karim, M.B., Wakamatsu, N., Altaf-Ul-Amin, Md.: [Dedicated to Prof. T. Okada and Prof. T., : Nishioka: data science in chemistry] DPClusOST: a software tool for general purpose graph clustering. J. Comput. Aided. Chem. 18, 76–93 (2017)Google Scholar
  17. 17.
    Nakamura, Y.: KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 55(1), e7–e7 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Bozlul Karim
    • 1
  • Shigehiko Kanaya
    • 1
  • Md. Altaf-Ul Amin
    • 1
    Email author
  1. 1.Nara Institute of Science and TechnologyNaraJapan

Personalised recommendations