Advertisement

Analysis of News Flow Dynamics Based on the Company Co-mention Network Characteristics

  • Vladimir Balash
  • Alfia Chekmareva
  • Alexey Faizliev
  • Sergei Sidorov
  • Sergei Mironov
  • Daniil Volkov
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)

Abstract

In this paper company co-mentions network is formed as a graph in which vertexes represent the world’s largest companies mentioned in financial and economic news flow. If two companies were mentioned in the same news report then the edge between two nodes is included in the co-mentions graph. The edge weight between any two nodes is calculated as the amount of news items that mentioned both companies in a certain period of time. We examine the changes of the structural properties of the company co-mentions graph over time. We analyze the distribution of the degrees of the vertices in this graph, the edge density of this graph as well as its connectivity. Based on the analysis, we make some conclusions regarding the dynamics of the evolution of the news flow.

Keywords

Network analysis News analytics Co-citation network Social networks 

References

  1. 1.
    Abbasi, A., Altmann, J.: On the correlation between research performance and social network analysis measures applied to research collaboration networks. In: 44th Hawaii International Conference on System Sciences (HICSS), pp. 1–10. IEEE (2011)Google Scholar
  2. 2.
    Abello, J., Pardalos, P.M., Resende, M.G.C.: On maximum clique problems in very large graphs. External Memory Algorithms, pp. 119–130. American Mathematical Society, Providence (1999)CrossRefGoogle Scholar
  3. 3.
    Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005)CrossRefGoogle Scholar
  4. 4.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Anthonisse, J.M.: The rush in a directed graph. Technical (1971)Google Scholar
  6. 6.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999).  https://doi.org/10.1126/science.286.5439.509, http://science.sciencemag.org/content/286/5439/509
  7. 7.
    Boccaletti, S., L.V.M.Y.C.M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)Google Scholar
  8. 8.
    Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Comput. Stat. Data Anal. 48(2), 431–443 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network approach. Comput. Oper. Res. 33(11), 3171 – 3184 (2006).  https://doi.org/10.1016/j.cor.2005.01.027. Part Special Issue: Operations Research and Data Mining
  10. 10.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). http://doi.acm.org/10.1145/362342.362367
  11. 11.
    Correa, C., Crnovrsanin, T., Ma, K.L.: Visual reasoning about social networks using centrality sensitivity. IEEE Trans. Vis. Comput. Graph. 18(1), 106–120 (2012)CrossRefGoogle Scholar
  12. 12.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)CrossRefGoogle Scholar
  13. 13.
    Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time (2010). CoRR abs/1006.5440 arXiv:1006.5440
  14. 14.
    Friedl, D.B., Heidemann, J., e.a.: A critical review of centrality measures in social networks. Bus. Inf. Syst. Eng. 2(6), 371–385 (2010)Google Scholar
  15. 15.
    Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78, 1360 (1973)CrossRefGoogle Scholar
  16. 16.
    Huang, W.Q., Zhuang, X.T., Yao, S.: A network analysis of the chinese stock market. Phys. A Stat. Mech. Its Appl. 388(14), 2956–2964 (2009).  https://doi.org/10.1016/j.physa.2009.03.028
  17. 17.
    Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A., Pardalos, P.M.: Optimal decision for the market graph identification problem in a sign similarity network. Ann. Oper. Res. (2017).  https://doi.org/10.1007/s10479-017-2491-6
  18. 18.
    Liu, B.: Web data mining. Springer, Berlin (2007)Google Scholar
  19. 19.
    Liu, X., Bollen, J., Nelson, M.L., de Sompel, V.: Co-authorship networks in the digital library research community. Inf. Process. Manag. 41(6), 1462–1480 (2005)CrossRefGoogle Scholar
  20. 20.
    Lofdahl, C., Stickgold, E., Skarin, B., Stewart, I.: Extending generative models of large scale networks. Proc. Manuf. 3(Supplement C), 3868 – 3875. In: 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, AHFE 2015Google Scholar
  21. 21.
    Mitra, G., Mitra, L. (eds.): The Handbook of News Analytics in Finance. Wiley, New Jercy (2011)Google Scholar
  22. 22.
    Mitra, G., Yu, X. (eds.): Handbook of Sentiment Analysis in Finance (2016)Google Scholar
  23. 23.
    Newman, M.E.J.: The structure and function of complex networks. Siam Rev. 45, 167–256 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ravasz, R., Barabasi, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026,112 (2003)CrossRefGoogle Scholar
  25. 25.
    Ravasz R., S.A.L.M.D.A.O.Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)Google Scholar
  26. 26.
    Sidorov, S.P., Faizliev, A.R., Balash, V.A., Gudkov, A.A., Chekmareva, A.Z., Anikin, P.K.: Company co-mention network analysis. In: Kalyagin, V.A., Pardalos, P.M., Prokopyev, O., Utkina, I. (eds.) Computational Aspects and Applications in Large-Scale Networks, pp. 341–354. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  27. 27.
    Sidorov, S.P., et al.: Qap analysis of company co-mention network. In: Bonato, A., Prałat, P., Raigorodskii, A. (eds.) Algorithms and Models for the Web Graph, pp. 83–98. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  28. 28.
    Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1803–1810 (2001)CrossRefGoogle Scholar
  29. 29.
    Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cambridge University Press, Cambridge (1994)Google Scholar
  30. 30.
    Yook S. H., O.Z.N., Barabasi, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir Balash
    • 1
  • Alfia Chekmareva
    • 1
  • Alexey Faizliev
    • 1
  • Sergei Sidorov
    • 1
  • Sergei Mironov
    • 1
  • Daniil Volkov
    • 1
  1. 1.Saratov State UniversitySaratovRussian Federation

Personalised recommendations