Inferring Short-Term Volatility Indicators from the Bitcoin Blockchain

  • Nino Antulov-FantulinEmail author
  • Dijana Tolic
  • Matija Piskorec
  • Zhang Ce
  • Irena Vodenska
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


In this paper, we study the possibility of inferring early warning indicators (EWIs) for periods of extreme bitcoin price volatility using features obtained from Bitcoin daily transaction graphs. We infer the low-dimensional representations of transaction graphs in the time period from 2012 to 2017 using Bitcoin blockchain, and demonstrate how these representations can be used to predict extreme price volatility events. Our EWI, which is obtained with a non-negative decomposition, contains more predictive information than those obtained with singular value decomposition or scalar value of the total Bitcoin transaction volume.


Financial networks Machine learning Bitcoin Blockchain 


Acknowledgement and Contribution

Thanks to students Grüner Maximilian, Weingart Nino, Riesenkampf Heiki for help in processing blockchain data. The work of N.A.F. has been funded by the EU Horizon 2020 SoBigData project under grant agreement No. 654024. All authors contributed to the writing and editing of the manuscript. N.A.F. performed computational modeling and experiments. D.T. performed computational modeling and design of research. M.P. and Z.C. were involved in data processing and analysis. I.V. was involved in financial analysis and interpretation of results.


  1. 1.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
  2. 2.
    Kleineberg, K.-K., Helbing, D.: A social bitcoin could sustain a democratic digital world. Eur. Phys. J. Spec. Top. 225, 3231–3241 (2016)CrossRefGoogle Scholar
  3. 3.
    Dapp, M.M., Klauser, S., Ballandies, M.: Finance 4.0 Concept Technical Report (2018).
  4. 4.
    Watanagase, T., et al.: Session 3: financial inclusion and financial education. In: Financial System Stability, Regulation, and Financial Inclusion, pp. 69–94. Springer, Berlin (2015)Google Scholar
  5. 5.
    Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A.: The network origins of large economic downturns. Technical Report, National Bureau of Economic Research (2013)Google Scholar
  6. 6.
    Huang, X., Vodenska, I., Havlin, S., Stanley, H.E.: Cascading failures in bi-partite graphs: model for systemic risk propagation. Sci. Rep. 3, 1219 (2013)CrossRefGoogle Scholar
  7. 7.
    Sakamoto, Y., Vodenska, I.: Systemic risk and structural changes in a bipartite bank network: a new perspective on the Japanese banking crisis of the 1990s. J. Complex Netw. 5, 315–333 (2017)Google Scholar
  8. 8.
    Glasserman, P., Young, H.P.: How likely is contagion in financial networks? J. Bank. Financ. 50, 383–399 (2015)CrossRefGoogle Scholar
  9. 9.
    Battiston, S., et al.: Complexity theory and financial regulation. Science 351, 818–819 (2016)Google Scholar
  10. 10.
    Piškorec, M., et al.: Cohesiveness in financial news and its relation to market volatility. Sci. Rep. 4, 5038 (2014)Google Scholar
  11. 11.
    Huang, X., Vodenska, I., Wang, F., Havlin, S., Stanley, H.E.: Identifying influential directors in the United States corporate governance network. Phys. Rev. E 84, 046101 (2011)CrossRefGoogle Scholar
  12. 12.
    Vodenska, I., Aoyama, H., Fujiwara, Y., Iyetomi, H., Arai, Y.: Interdependencies and causalities in coupled financial networks. PloS One 11, e0150994 (2016)CrossRefGoogle Scholar
  13. 13.
    Yermack, D.: Is bitcoin a real currency? an economic appraisal. Handbook of Digital Currency, pp. 31–43. Elsevier, Berlin (2015)CrossRefGoogle Scholar
  14. 14.
    Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M.C., Siering, M.: Bitcoin - asset or currency? revealing users’ hidden intentions. ECIS 2014 (tel aviv). Available at SSRN: (15 April 2014)
  15. 15.
    Garcia, D., Tessone, C.J., Mavrodiev, P., Perony, N.: The digital traces of bubbles: feedback cycles between socio-economic signals in the bitcoin economy. J. R. Soc. Interface 11, 20140623 (2014)Google Scholar
  16. 16.
    Garcia, D., Schweitzer, F.: Social signals and algorithmic trading of bitcoin. R. Soc. Open Sci. 2, 150288 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Amjad, M., Shah, D.: Trading bitcoin and online time series prediction. In: NIPS 2016 Time Series Workshop, pp. 1–15 (2017)Google Scholar
  18. 18.
    Wheatley, S., Sornette, D., Huber, T., Reppen, M., Gantner, R.N.: Are bitcoin bubbles predictable? combining a generalized metcalfe’s law and the lppls model (2018). arXiv:1803.05663
  19. 19.
    Guo, T., Bifet, A., Antulov-Fantulin, N.: Bitcoin volatility forecasting with a glimpse into buy and sell orders. In: 2018 IEEE International Conference on Data Mining (ICDM). Singapore (2018)Google Scholar
  20. 20.
    Kim, Y.B., et al.: Predicting fluctuations in cryptocurrency transactions based on user comments and replies. PLOS One 11, e0161197 (2016)CrossRefGoogle Scholar
  21. 21.
    Kondor, D., Csabai, I., Szule, J., Posfai, M., Vattay, G.: Inferring the interplay between network structure and market effects in bitcoin. New J. Phys. 16, 125003 (2014)CrossRefGoogle Scholar
  22. 22.
    Kondor, D., Posfai, M., Csabai, I., Vattay, G.: Do the rich get richer? an empirical analysis of the bitcoin transaction network. PLOS One 9, 1–10 (2014)CrossRefGoogle Scholar
  23. 23.
    ElBahrawy, A., Alessandretti, L., Kandler, A., Pastor-Satorras, R., Baronchelli, A.: Evolutionary dynamics of the cryptocurrency market. R. Soc. Open Sci. 4, 170623 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bolt, W.: On the value of virtual currencies. SSRN Electron. J. (2016). Available at SSRN:
  25. 25.
    Hayes, A.: Cryptocurrency value formation: an empirical analysis leading to a cost of production model for valuing bitcoin. SSRN Electron. J. (2015). Available at SSRN:
  26. 26.
    Kristoufek, L.: What are the main drivers of the bitcoin price? evidence from wavelet coherence analysis. PLOS One 10, e0123923 (2015)CrossRefGoogle Scholar
  27. 27.
    Donier, J., Bouchaud, J.-P.: Why do markets crash? bitcoin data offers unprecedented insights. PLOS One 10, 1–11 (2015)CrossRefGoogle Scholar
  28. 28.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Financial Cryptography and Data Security, pp. 6–24. Springer, Berlin, Heidelberg (2013)Google Scholar
  29. 29.
    Möser, M., Böhme, R.: The price of anonymity: empirical evidence from a market for bitcoin anonymization. J. Cybersecur. 3, 127–135 (2017)CrossRefGoogle Scholar
  30. 30.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Advances in Cryptology - EUROCRYPT 2015, pp. 281–310. Springer, Berlin, Heidelberg (2015)Google Scholar
  31. 31.
    Eyal, I., Sirer, E.G.: Majority is not enough. Commun. ACM 61, 95–102 (2018)CrossRefGoogle Scholar
  32. 32.
    Ciaian, P., Rajcaniova, M., Kancs, A.: The economics of bitcoin price formation (2014). arXiv:1405.4498
  33. 33.
    Bouoiyour, J., Selmi, R.: The bitcoin price formation: beyond the fundamental sources (2017). arXiv:1707.01284
  34. 34.
    Kong, D., Ding, C., Huang, H.: Robust nonnegative matrix factorization using l21-norm. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 673–682. ACM, New York, NY, USA (2011)Google Scholar
  35. 35.
    Ding, C.H.Q., Zhou, D., He, X., Zha, H.: R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization. In: Cohen, W.W., Moore, A. (eds.) ICML, Volume 148 of ACM International Conference Proceeding Series, pp. 281–288. ACM (2006)Google Scholar
  36. 36.
    Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inf. Theor. 56, 2980–2998 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Meilijson, I.: The garman-klass volatility estimator revisited. Revstat Stat. J. 9(3), 199–212 (2011)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9, 293–300 (1999)CrossRefGoogle Scholar
  39. 39.
    Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240. ACM, New York, NY, USA (2006)Google Scholar
  40. 40.
    Hoyer, P.: Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557-565. IEEE (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nino Antulov-Fantulin
    • 1
    Email author
  • Dijana Tolic
    • 2
  • Matija Piskorec
    • 2
  • Zhang Ce
    • 3
  • Irena Vodenska
    • 4
  1. 1.Computational Social Science, ETH ZurichZurichSwitzerland
  2. 2.Laboratory for Machine Learning and Knowledge RepresentationsInstitute Ruder BoškovićZagrebCroatia
  3. 3.Systems Group, ETHZurichSwitzerland
  4. 4.Metropolitan College, Boston UniversityBrooklineUSA

Personalised recommendations