Complex Interbank Network Estimation: Sparsity-Clustering Threshold

  • Nils BundiEmail author
  • Khaldoun Khashanah
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


In the “too-interconnected-to-fail” discussion network theory has emerged as an important tool to identify risk concentrations in interbank networks. Therefore, however, data on bilateral bank exposures, i.e. the edges in such a network, is not available but has to be estimated. In this work we report on the possibility of enhancing existing inference techniques with prior knowledge on network topology in order to preserve complex interbank network characteristics. A convenient feature of our technique is that a single parameter \(\alpha \) governs the characteristics of the resulting network. In an empirical study we reconstruct the network of about 2100 US commercial banks and show that complex network characteristics can indeed be preserved and, moreover, controlled by \(\alpha \). In an outlook we discuss the possibility of developing an \(\alpha \)-based measurement for the complexity characteristics of observed interbank networks.


Interbank networks Network estimation Sparse networks Node clustering 


  1. 1.
    Affinito, M.: Do interbank customer relationships exist? and how did they function in the crisis? Learning from italy. J. Bank. Financ. 36(12), 3163–3184 (2012)CrossRefGoogle Scholar
  2. 2.
    Affinito, M., Pozzolo, A.F.: The interbank network across the global financial crisis: evidence from italy. J. Bank. Financ. 80, 90–107 (2017)CrossRefGoogle Scholar
  3. 3.
    Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anand, K., Craig, B., Peter, G.V.: Filling in the blanks: network structure and interbank contagion. Quant. Financ. 15(4), 625–636 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Battiston, S., Caldarelli, G., Gurciullo, S.: Leveraging the network: a stress-test framework based on DebtRank. Stat. Risk Model. 33(3–4), 117–138 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bech, M.L., Atalay, E.: The topology of the federal funds market. Phys. A: Stat. Mech. Its Appl. 389(22), 5223–5246 (2010)CrossRefGoogle Scholar
  7. 7.
    Boss, M., Elsinger, H., Summer, M., Thurner, S.: Network topology of the interbank market. Quant. Financ. 4(6), 677–684 (2004)CrossRefGoogle Scholar
  8. 8.
    Cocco, J.F., Gomes, F.J., Martins, N.C.: Lending relationships in the interbank market. J. Financ. Intermediation 18(1), 24–48 (2009)CrossRefGoogle Scholar
  9. 9.
    Cont, R., Moussa, A., Santos, E.B.: Network structure and systemic risk in banking systems. Handbook on Systemic Risk, pp. 327–368 (2013)Google Scholar
  10. 10.
    Degryse, H., Nguyen, G.: Interbank exposures: an empirical examination of systemic risk in the belgian banking system. Int. J. Central Bank. 3(2), 123–171 (2007)Google Scholar
  11. 11.
    Degryse, H., Ongena, S.: Distance, lending relationships, and competition. Am. Financ. Assoc. 60(1), 231–266 (2005)Google Scholar
  12. 12.
    Eisenberg, L., Noe, T.: Systemic risk in financial systems. Manag. Sci. 47(2), 236–249 (2001)CrossRefGoogle Scholar
  13. 13.
    Fruchterman, T., Reingold, E.: Graph drawing by force directed placement. Softw.: Pract. Exp. 21(NOVEMBER), 1129–1164 (1991)Google Scholar
  14. 14.
    Furfine, C.H.: Interbank exposures: quantifying the risk of contagion. J. Money Credit Bank. 35(1), 111–128 (2003)CrossRefGoogle Scholar
  15. 15.
    Gofman, M.: Efficiency and stability of a financial architecture with too-interconnected-to-fail institutions. J. Financ. Econ. 124(1), 113–146 (2017)CrossRefGoogle Scholar
  16. 16.
    Greenwood, R., Landier, A., Thesmar, D.: Vulnerable banks. J. Financ. Econ. 115(3), 471–485 (2015)CrossRefGoogle Scholar
  17. 17.
    Inaoka, H., Ninomiya, T., Shimizu, T., Takayasu, H., Taniguchi, K.: In: 04-E-04. James, K pages, (ed.), pp. 1–22(2004)Google Scholar
  18. 18.
    Lehmann, E., Neuberger, D.: Do lending relationships matter? Evidence from bank survey data in Germany. J. Econ. Behav. Organ. 45(4), 339–359 (2001)CrossRefGoogle Scholar
  19. 19.
    Lelyveld, I.V., Liedorp, F.: Interbank contagion in the dutch banking sector: a sensitivity analysis. Int. J. Central Bank. 2, 99–133 (2006)Google Scholar
  20. 20.
    Markose, S., Giansante, S., Shaghaghi, A.R.: ‘Too interconnected to fail’ financial network of US CDS market: topological fragility and systemic risk. J. Econ. Behav. Organ. 83(3), 627–646 (2012)CrossRefGoogle Scholar
  21. 21.
    Mistrulli, P.E.: Assessing financial contagion in the interbank market: maximum entropy versus observed interbank lending patterns. J. Bank. Financ. 35(5), 1114–1127 (2011)CrossRefGoogle Scholar
  22. 22.
    Müller, J.: Interbank credit lines as a channel of contagion. J. Financ. Serv. Res. 29(2000), 37–60 (2006)CrossRefGoogle Scholar
  23. 23.
    Rørdam, K.B., Bech, M.L.: The topology of Danish interbank money flows. Banks Bank Syst. 4(4), 48–65 (2009)Google Scholar
  24. 24.
    Soramäki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of interbank payment flows. Phys. A: Stat. Mech. Its Appl. 379(1), 317–333 (2007)CrossRefGoogle Scholar
  25. 25.
    Upper, C.: Simulation methods to assess the danger of contagion in interbank markets. J. Financ. Stab. 7(3), 111–125 (2011)CrossRefGoogle Scholar
  26. 26.
    Volcker, P.: Unfinished business in financial reform. Int. Financ. 15(1), 125–135 (2012)CrossRefGoogle Scholar
  27. 27.
    Watts, D.J.J., Strogatz, S.H.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stevens Institute of TechnologyHobokenUSA
  2. 2.Zurich University of Applied SciencesWinterthurSwitzerland

Personalised recommendations