# Numerical Assessment of the Percolation Threshold Using Complement Networks

## Abstract

Models of percolation processes on networks currently assume locally tree-like structures at low densities, and are derived exactly only in the thermodynamic limit. Finite size effects and the presence of short loops in real systems however cause a deviation between the empirical percolation threshold \(p_c\) and its model-predicted value \(\pi _c\). Here we show the existence of an empirical linear relation between \(p_c\) and \(\pi _c\) across a large number of real and model networks. Such a putatively universal relation can then be used to correct the estimated value of \(\pi _c\). We further show how to obtain a more precise relation using the concept of the complement graph, by investigating on the connection between the percolation threshold of a network, \(p_c\), and that of its complement, \(\bar{p}_c\).

## Keywords

Percolation theory Complement graphs## Notes

### Acknowledgments

This work was supported by the EU projects CoeGSS (grant no. 676547) and SoBigData (grant no. 654024).

## References

- 1.Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor and Francis (1994)Google Scholar
- 2.Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett.
**85**, 5468 (2000)Google Scholar - 3.Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E
**66**, 016128 (2002)Google Scholar - 4.Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Rev. Modern Phys.
**80**, 1275 (2008)Google Scholar - 5.Cohen, R., ben Avraham, D., Havlin, S.: Percolation critical exponents in scale-free networks. Phys. Rev. E
**66**, 036113 (2002)Google Scholar - 6.Serrano, M.A., Boguná, M.: Stability diagram of a few-electron triple dot. Phys. Rev. Lett.
**97**, 088701 (2006)Google Scholar - 7.Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett.
**103**, 058701 (2009)Google Scholar - 8.Karrer, B., Newman, M.E.J., Zdeborová, L.: Percolation on sparse networks. Phys. Rev. Lett.
**113**, 208702 (2014)Google Scholar - 9.Hamilton, K.E., Pryadko, L.P.: Tight lower bound for percolation threshold on an infinite graph. Phys. Rev. Lett.
**113**, 208701 (2014)Google Scholar - 10.Hashimoto, K., Namikawa, Y.: Automorphic Forms and Geometry of Arithmetic Varieties. Advanced Studies in Pure Mathematics. Elsevier Science (2014)Google Scholar
- 11.Radicchi, F., Castellano, C.: Beyond the locally treelike approximation for percolation on real networks. Phys. Rev. E
**93**, 030302 (2016)Google Scholar - 12.Radicchi, F.: Predicting percolation thresholds in networks. Phys. Rev. E
**91**, 010801 (2015)Google Scholar - 13.Timar, G., da Costa, R.A., Dorogovtsev, S.N., Mendes, J.F.F.: Nonbacktracking expansion of finite graphs. Phys. Rev. E
**95**, 042322 (2017)Google Scholar - 14.Newman, M.E.J., Ziff, R.M.: Efficient Monte Carlo algorithm and high-precision results for percolation. Phys. Rev. Lett.
**85**, 4104 (2000)Google Scholar - 15.Radicchi, F., Castellano, C.: Breaking of the site-bond percolation universality in networks. Nature Commun.
**6**, 10196 (2015)Google Scholar - 16.Newman, M.E.J.: The structure and function of complex networks. SIAM Rev.
**45**, 167 (2003)Google Scholar - 17.Clark, L., Entringer, R.: Smallest maximally nonhamiltonian graphs. Periodica Math. Hung.
**14**, 57 (1983)Google Scholar - 18.Gross, J., Yellen, J.: Graph Theory and Its Applications. Discrete Mathematics and Its Applications. Taylor and Francis (1998)Google Scholar
- 19.Nordhaus, E.A., Gaddum, J.W.: A Kaleidoscopic view of graph colorings. Am. Math. Mon.
**63**, 175 (1956)Google Scholar - 20.Kao, M.Y., Occhiogrosso, N., Teng, S.-H.: Simple and efficient graph compression schemes for dense and complement graphs. J. Comb. Optim.
**2**, 351 (1998)Google Scholar - 21.Ito, H., Yokoyama, M.: Linear time algorithms for graph search and connectivity determination on complement graphs. Inf. Proc. Lett.
**66**, 209 (1998)Google Scholar - 22.Duan, Z., Liu, C., Chen, G.: Network synchronizability analysis: the theory of subgraphs and complementary graphs. Phys. D Nonlinear Phenom.
**237**, 1006 (2008)Google Scholar - 23.Bermudo, S., Rodrguez, J.M., Sigarreta, J.M., Tours, E.: Hyperbolicity and complement of graphs. Appl. Math. Lett.
**24**, 1882 (2011)Google Scholar - 24.Haas, R., Wexler, T.B.: Bounds on the signed domination number of a graph. Discret. Math.
**283**, 87 (2004)Google Scholar - 25.Akiyama, J., Harary, F.: A graph and its complement with specified properties. Int. J. Math. Math. Sci.
**2**, 223 (1979)Google Scholar - 26.Xu, S.: Some parameter of graph and its component. Discret. Math.
**65**, 197 (1987)Google Scholar - 27.Petrovic, M., Radosavljevic, Z., Simic, S.: A graph and its complement with specified spectral properties. Linear Multilinear Algebra
**51**, 405 (2003)Google Scholar - 28.Bollobas, B., Borgs, C., Chayes, J., Riordan, O.: Percolation on dense graph sequences. Ann. Probab.
**38**, 150 (2010)Google Scholar