Advertisement

Evaluating the Natural Variability in Generative Models for Complex Networks

  • Viplove Arora
  • Mario Ventresca
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)

Abstract

Complex networks are used to represent real-world systems using sets of nodes and edges that represent elements and their interactions, respectively. A principled approach to understand these network structures (and the processes that give rise to them) is to formulate generative models and infer their parameters from given data. Ideally, a generative model should be able to synthesize networks that belong to the same population as the observed data, but most models are not designed to accomplish this task. Due to the scarcity of data in the form of populations of networks, generative models are typically formulated to learn parameters from a single network observation, hence ignoring the natural variability of network populations. In this paper, we evaluate four generative models with respect to their ability to synthesize networks that belong to the same population as the observed network. Our empirical analysis quantifying the ability of network models to replicate characteristics of a population of networks highlights the need for rethinking the way we evaluate the goodness of fit of new and existing network models.

Keywords

Network models Network populations Network analysis 

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1762633.

References

  1. 1.
    Alderson, D.L.: Catching the “network science” bug: insight and opportunity for the operations researcher. Oper. Res. 56(5), 1047–1065 (2008).  https://doi.org/10.1287/opre.1080.0606
  2. 2.
    Arora, V., Ventresca, M.: Action-based modeling of complex networks. Sci. Rep. 7(1), 6673 (2017).  https://doi.org/10.1038/s41598-017-05444-4Google Scholar
  3. 3.
    Avena-Koenigsberger, A., Goni, J., Sole, R., Sporns, O.: Network morphospace. J. R. Soc. Interf. 12(103), 20140,881–20140,881 (2014).  https://doi.org/10.1098/rsif.2014.0881
  4. 4.
    Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144), 1236,498 (2013)Google Scholar
  5. 5.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(October), 509–512 (1999).  https://doi.org/10.1126/science.286.5439.509Google Scholar
  6. 6.
    Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Annal. Comb. 6(2), 125–145 (2002)Google Scholar
  7. 7.
    Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Nat. Acad. Sci. 99(25), 15879–15882 (2002)Google Scholar
  8. 8.
    Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. (09), P09,008–P09,008 (2005).  https://doi.org/10.1088/1742-5468/2005/09/P09008
  9. 9.
    Faust, K., Wasserman, S.: Blockmodels: interpretation and evaluation. Soc. Netw. 14(1–2), 5–61 (1992).  https://doi.org/10.1016/0378-8733(92)90013-WGoogle Scholar
  10. 10.
    Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016).  https://doi.org/10.1016/j.physrep.2016.09.002Google Scholar
  11. 11.
    Goldenberg, A.: A survey of statistical network models. Foundations and trends\(\textregistered {R}\). Mach. Learn. 2(3), 235–274 (2009).  https://doi.org/10.1561/2200000008
  12. 12.
    Gutfraind, A., Meyers, L.A., Safro, : I.: Multiscale Network Generation. arXiv:1207.4266, 28 (2012)
  13. 13.
    Hunter, D.R.: Curved exponential family models for social networks. Soc. Netw. 29(2), 216–230 (2007).  https://doi.org/10.1016/j.socnet.2006.08.005Google Scholar
  14. 14.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theoret. Biol. 271(1), 166–180 (2011)Google Scholar
  15. 15.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution. ACM Trans. Knowl. Discov. Data 1(1), 2-es (2007).  https://doi.org/10.1145/1217299.1217301
  16. 16.
    Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. ACM SIGCOMM Comput. Commun. Rev. 36(4), 135 (2006).  https://doi.org/10.1145/1151659.1159930Google Scholar
  17. 17.
    Moreno, S., Neville, J.: an investigation of the distributional characteristics of generative graph models. In: Proceedings of the 1st Workshop on Information in Networks (2009)Google Scholar
  18. 18.
    Moreno, S., Neville, J.: Network hypothesis testing using Mixed Kronecker product graph models. In: Xiong, H., Karypis, G., Thuraisingham, B.M., Cook, D.J., Wu, X. (eds.), pp. 1163–1168 (2013)Google Scholar
  19. 19.
    Moreno, S., Neville, J., Kirshner, S.: Tied Kronecker product graph models to capture variance in network populations. ACM Trans. Knowl. Discov. Data 20(3), 1–40 (2018).  https://doi.org/10.1145/3161885Google Scholar
  20. 20.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)Google Scholar
  21. 21.
    Orsini, C., Dankulov, M.M., Colomer-de Simón, P., Jamakovic, A., Mahadevan, P., Vahdat, A., Bassler, K.E., Toroczkai, Z., Boguñá, M., Caldarelli, G., Fortunato, S., Krioukov, D.: Quantifying randomness in real networks. Nat. Commun. 6(May), 8627 (2015).  https://doi.org/10.1038/ncomms9627Google Scholar
  22. 22.
    Peacock, J.A.: Two-dimensional goodness-of-fit testing in astronomy. Month. Notices R. Astron. Soc. 202(3), 615–627 (1983)Google Scholar
  23. 23.
    Peixoto, T.P.: Nonparametric Bayesian inference of the microcanonical stochastic block model. Phys. Rev. E 95(1), 1–21 (2017).  https://doi.org/10.1103/PhysRevE.95.012317Google Scholar
  24. 24.
    Pinar, A., Seshadhri, C., Kolda, T.G.: The similarity between stochastic Kronecker and Chung-Lu graph models. In: Zaki, M., Obradovic, Z., Tan, P.N., Banerjee, A., Kamath, C., Parthasarathy, S. (eds.), Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 1071–1082. Society for Industrial and Applied Mathematics, Philadelphia, PA (2012).  https://doi.org/10.1137/1.9781611972825.92
  25. 25.
    Piraveenan, M., Prokopenko, M., Zomaya, : A.Y.: Local assortativeness in scale-free networks. EPL (Europhysics Letters) 84(2), 28,002 (2008).  https://doi.org/10.1209/0295-5075/84/28002
  26. 26.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Nat. Acad. Sci. 105(4), 1118–1123 (2008).  https://doi.org/10.1073/pnas.0706851105Google Scholar
  27. 27.
    Schieber, T.A., Carpi, L., Díaz-Guilera, A., Pardalos, P.M., Masoller, C., Ravetti, M.G.: Quantification of network structural dissimilarities. Nat. Commun. 8(May 2016), 13,928 (2017).  https://doi.org/10.1038/ncomms13928
  28. 28.
    Snijders, T.A.B., Pattison, P.E., Robins, G.L.: Specifications for exponential random graph models. In: Sociological Methodology, p. 44., Handcock, M.S.: New (2004).  https://doi.org/10.1111/j.1467-9531.2006.00176.x
  29. 29.
    Strauss, D.: On a general class of models for interaction. SIAM Rev. 28(4), 513–527 (1986)Google Scholar
  30. 30.
    Views, R.: University of Oregon route views project (2000)Google Scholar
  31. 31.
    Wasserman, S., Anderson, C.: Stochastic a posteriori blockmodels: construction and assessment. Soc. Netw. 9(1), 1–36 (1987).  https://doi.org/10.1016/0378-8733(87)90015-3Google Scholar
  32. 32.
    Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks. Psychometrika 60, 401–425 (1996)Google Scholar
  33. 33.
    Zheng, B., Wu, H., Kuang, L., Qin, J., Du, W., Wang, J., Li, D.: A simple model clarifies the complicated relationships of complex networks. Sci. Rep. 4, 6197 (2014).  https://doi.org/10.1038/srep06197Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Industrial EngineeringPurdue UniversityWest Lafayette INUSA

Personalised recommendations