Advertisement

Mapping Structural Diversity in Networks Sharing a Given Degree Distribution and Global Clustering: Adaptive Resolution Grid Search Evolution with Diophantine Equation-Based Mutations

  • Peter Overbury
  • István Z. Kiss
  • Luc Berthouze
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)

Abstract

Methods that generate networks sharing a given degree distribution and global clustering can induce changes in structural properties other than that controlled for. Diversity in structural properties, in turn, can affect the outcomes of dynamical processes operating on those networks. Since exhaustive sampling is not possible, we propose a novel evolutionary framework for mapping this structural diversity. The three main features of this framework are: (a) subgraph-based encoding of networks, (b) exact mutations based on solving systems of Diophantine equations, and (c) heuristic diversity-driven mechanism to drive resolution changes in the MapElite algorithm. We show that our framework can elicit networks with diversity in their higher-order structure and that this diversity affects the behaviour of the complex contagion model. Through a comparison with state of the art clustered network generation methods, we demonstrate that our approach can uncover a comparably diverse range of networks without needing computationally unfeasible mixing times. Further, we suggest that the subgraph-based encoding provides greater confidence in the diversity of higher-order network structure for low numbers of samples and is the basis for explaining our results with complex contagion model. We believe that this framework could be applied to other complex landscapes that cannot be practically mapped via exhaustive sampling.

References

  1. 1.
    Anand, K., Bianconi, G.: Entropy measures for networks: toward an information theory of complex topologies. Phys. Rev. E 80(4), 045,102 (2009)Google Scholar
  2. 2.
    Betzel, R.F., Bassett, D.S.: Generative models for network neuroscience: prospects and promise. J. R. Soc. Interface 14, 20170,623 (2017)Google Scholar
  3. 3.
    Courtney, O.T., Bianconi, G.: Generalized network structures: the configuration model and the canonical ensemble of simplicial complexes. Phys. Rev. E 93(6), 062,311 (2016)Google Scholar
  4. 4.
    Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2018)Google Scholar
  5. 5.
    Del Genio, C.I., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLoS ONE 5(4), 1–7 (2010)Google Scholar
  6. 6.
    Eames, K.T.: Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73(1), 104–111 (2008)Google Scholar
  7. 7.
    Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)Google Scholar
  8. 8.
    Erdos, P., Gallai, T.: Gráfok eloırt fokszámú pontokkal. Matematikai Lapok 11, 264–274 (1960)Google Scholar
  9. 9.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 35–41 (1977)Google Scholar
  10. 10.
    Giagkiozis, I., Purshouse, R.C., Fleming, P.J.: An overview of population-based algorithms for multi-objective optimisation. Int. J. Syst. Sci. 46(9), 1572–1599 (2015)Google Scholar
  11. 11.
    Green, D.M., Kiss, I.Z.: Large-scale properties of clustered networks: implications for disease dynamics. J. Biol. Dyn. 4(5), 431–445 (2010)Google Scholar
  12. 12.
    Havas, G., Majewski, B.S., Matthews, K.R.: Extended GCD and hermite normal form algorithms via lattice basis reduction. Exp. Math. 7(2), 125–136 (1998)Google Scholar
  13. 13.
    House, T., Davies, G., Danon, L., Keeling, M.J.: A motif-based approach to network epidemics. Bull. Math. Biol. 71(7), 1693–1706 (2009)Google Scholar
  14. 14.
    House, T., Keeling, M.J.: The impact of contact tracing in clustered populations. PLoS Comput. Biol. 6(3), e1000,721 (2010)Google Scholar
  15. 15.
    Karrer, B., Newman, M.E.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82(6), 066,118 (2010)Google Scholar
  16. 16.
    Keeling, M.J., et al.: Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. (2011)Google Scholar
  17. 17.
    Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. Springer (2017)Google Scholar
  18. 18.
    Liu, H.L., Chen, L., Deb, K., Goodman, E.D.: Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms. IEEE Trans. Evol. Comput. 21(3), 408–425 (2017)Google Scholar
  19. 19.
    Lovász, L.: Large networks and graph limits. Am. Math. Soc. 60 (2012)Google Scholar
  20. 20.
    Miller, J.C.: Complex contagions and hybrid phase transitions. J. Complex Netw. 4(2), 201–223 (2015)Google Scholar
  21. 21.
    Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv:1504.04909 v1 (2015)
  22. 22.
    Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016,128 (2002)Google Scholar
  23. 23.
    Nordmoen, J., Samuelsen, E., Ellefsen, K.O., Glette, K.: Dynamic mutation in map-elites for robotic repertoire generation. In: Artificial Life Conference Proceedings, pp. 598–605. MIT Press (2018)Google Scholar
  24. 24.
    Orsini, C., et al.: Quantifying randomness in real networks. Nat. Commun. 6, 8627 (2015)Google Scholar
  25. 25.
    Overbury, P., Kiss, I.Z., Berthouze, L.: A genetic algorithm-based approach to mapping the diversity of networks sharing a given degree distribution and global clustering. In: Complex Networks & Their Applications V, vol. 693, pp. 223–233 (2016)Google Scholar
  26. 26.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)Google Scholar
  27. 27.
    Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front Robot. AI 3, 40 (2016)Google Scholar
  28. 28.
    Read, J.M., Keeling, M.J.: Disease evolution on networks: the role of contact structure. Proc. R. Soc. B 270(1516), 699–708 (2003)Google Scholar
  29. 29.
    Ritchie, M., Berthouze, L., House, T., Kiss, I.Z.: Higher-order structure and epidemic dynamics in clustered networks. J. Theor. Biol. 348, 21–32 (2014)Google Scholar
  30. 30.
    Ritchie, M., Berthouze, L., Kiss, I.Z.: Generation and analysis of networks with a prescribed degree sequence and subgraph family: higher-order structure matters. J. Complex Netw. 5(1), 1–31 (2017)Google Scholar
  31. 31.
    Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007)Google Scholar
  32. 32.
    Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: A comparison of illumination algorithms in unbounded spaces. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1578–1581. ACM (2017)Google Scholar
  33. 33.
    Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: Using centroidal Voronoi tessellations to scale up the multi-dimensional archive of phenotypic elites algorithm. IEEE Trans. Evol. Comput. (2017)Google Scholar
  34. 34.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)Google Scholar
  35. 35.
    Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Peter Overbury
    • 1
  • István Z. Kiss
    • 2
  • Luc Berthouze
    • 1
  1. 1.Department of InformaticsUniversity of SussexBrightonUK
  2. 2.Department of MathematicsUniversity of SussexBrightonUK

Personalised recommendations